Development of Molecular Markers Linked to Powdery Mildew Resistance Gene Pm4b by Combining SNP Discovery from Transcriptome Sequencing Data with Bulked Segregant Analysis (BSR-Seq) in Wheat

文献类型: 外文期刊

第一作者: Wu, Peipei

作者: Wu, Peipei;Hu, Jinghuang;Qiu, Dan;Zhang, Hongjun;Yang, Li;Liu, Hongwei;Zhou, Yang;Li, Hongjie;Wu, Peipei;Zhang, Zhongjun;Xie, Jingzhong;Liu, Zhiyong;Li, Miaomiao;Li, Jingting

作者机构:

关键词: powdery mildew;Pm4b;BSR-Seq;RNA-Seq;SNP;SSR marker

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2018 年 9 卷

页码:

收录情况: SCI

摘要: Powdery mildew resistance gene Pm4b, originating from Triticum persicum, is effective against the prevalent Blumeria graminis f. sp. tritici (Bgt) isolates from certain regions of wheat production in China. The lack of tightly linked molecular markers with the target gene prevents the precise identification of Pm4b during the application of molecular marker-assisted selection (MAS). The strategy that combines the RNA-Seq technique and the bulked segregant analysis (BSR-Seq) was applied in an F2:3 mapping population (237 families) derived from a pair of isogenic lines VPM1/7*Bainong 3217 F-4 (carrying Pm4b) and Bainong 3217 to develop more closely linked molecular markers. RNA-Seq analysis of the two phenotypically contrasting RNA bulks prepared from the representative F-2:3 families generated 20,745,939 and 25,867,480 high-quality read pairs, and 82.8 and 80.2% of them were uniquely mapped to the wheat whole genome draft assembly for the resistant and susceptible RNA bulks, respectively. Variant calling identified 283,866 raw single nucleotide polymorphisms (SNPs) and InDels between the two bulks. The SNPs that were closely associated with the powdery mildew resistance were concentrated on chromosome 2AL. Among the 84 variants that were potentially associated with the disease resistance trait, 46 variants were enriched in an about 25 Mb region at the distal end of chromosome arm 2AL. Four Pm4b-linked SNP markers were developed from these variants. Based on the sequences of Chinese Spring where these polymorphic SNPs were located, 98 SSR primer pairs were designed to develop distal markers flanking the Pm4b gene. Three SSR markers, Xics13, Xics43, and Xics76, were incorporated in the new genetic linkage map, which located Pm4b in a 3.0 cM genetic interval spanning a 6.7 Mb physical genomic region. This region had a collinear relationship with Brachypodium distachyon chromosome 5, rice chromosome 4, and sorghum chromosome 6. Seven genes associated with disease resistance were predicted in this collinear genomic region, which included C2 domain protein, peroxidase activity protein, protein kinases of PKc_like super family, Mlo family protein, and catalytic domain of the serine/threonine kinases (STKc_IRAK like super family). The markers developed in the present study facilitate identification of Pm4b during its MAS practice.

分类号:

  • 相关文献

[1]Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum. Zhang, Hong,Hu, Weiguo,Hao, Jilei,Lv, Shikai,Wang, Changyou,Tong, Wei,Wang, Yajuan,Wang, Yanzhen,Liu, Xinlun,Ji, Wanquan,Hu, Weiguo. 2016

[2]RNA-Seq Analysis Provides the First Insights into the Phylogenetic Relationship and Interspecific Variation between Agropyron cristatum and Wheat. Zhou, Shenghui,Yan, Baiqiang,Li, Fei,Zhang, Jinpeng,Zhang, Jing,Ma, Huihui,Liu, Weihua,Lu, Yuqing,Yang, Xinming,Li, Xiuquan,Liu, Xu,Li, Lihui. 2017

[3]An RNA Sequencing Transcriptome Analysis of Grasspea (Lathyrus Sativus L.) and Development of SSR and KASP Markers. Hao, Xiaopeng,Wang, Yan,Chang, Jianwu,Yang, Tao,Liu, Rong,Yao, Yang,Ren, Guixing,Zhang, Hongyan,Wang, Dong,Zong, Xuxiao,Hu, Jinguo,Burlyaeva, Marina. 2017

[4]Development of molecular markers linked to the wheat powdery mildew resistance gene Pm4b and marker validation for molecular breeding. Yi, Y. J.,Li, H. Y.,Wang, F.,Yi, Y. J.,An, L. Z.,Wang, X. L.,Huang, X. Q.. 2008

[5]Construction of a bacterial artificial chromosome library for Gossypium herbaceum var. africanum. Gao HaiYan,WANG XingFen,LIU Fang,PENG RenHai,ZHANG Yan,CHENG Hua,WANG KunBo. 2013

[6]Construction and characterization of a bacterial artificial chromosome library for the allotetraploid Gossypium tomentosum. F. Liu,Y.H. Wang,H.Y. Gao,C.Y. Wang,Z.L. Zhou,X.Y. Cai,X.X. Wang,Z.S. Zhang,K.B. Wang. 2015

[7]A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Bai, Gui-Hua,Chen, Cui-Xia,Cai, Shi-Bin,Cai, Shi-Bin. 2008

[8]Analysis of an Applied Core Collection of Adzuki Bean Germplasm by Using SSR Markers. Wang Li-xia,Cheng Xu-zhen,Wang Su-hua,Tian Jing. 2012

[9]EST-SSR Marker-Based Assay for Purity Identification of Melon "Green Angle". Li, Ou-Jing,Chen, Xiao-Mu,Xia, Pu-Xian,Pei, Zhong-You,Wang, Yong,Lan, Qing-Kuo,Zhang, Ruo-Wei. 2015

[10]Stripe rust resistance in Chinese bread wheat cultivars and lines. Xia, X. C.,Li, Z. F.,Li, G. Q.,He, Z. H.,Li, Z. F.,Li, G. Q.,Xia, X. C.,He, Z. H.,Singh, R. P.. 2007

[11]Detection of homozygosity in near isogenic Lines of non-susceptible to Zhenjiang strain of densonucleosis virus in silkworm. Li Muwang,Hou Chengxiang,Zhao Yunpo,Xu Anying,Guo Xijie,Huang Yongping. 2007

[12]Mapping a resistance gene in wheat cultivar Yangfu 9311 to yellow mosaic virus, using microsatellite markers. Liu, WH,Nie, H,Wang, SB,Li, X,He, ZT,Han, CG,Wang, JR,Chen, XL,Li, LH,Yu, JL. 2005

[13]Analysis of Genetic Similarity for Improved Japonica Rice Varieties from Different Provinces and Cities in China. Shu Ai-ping,Zhang Yuan-yuan,Cao Gui-lan,Han Long-zhi,Shu Ai-ping,Lu Qin,Shu Ai-ping,Zhang San-yuan. 2010

[14]Analysis of simple sequence repeats markers derived from Phytophthora sojae expressed sequencetags. Zhu, ZD,Huo, YL,Wang, XM,Huang, JB,Wu, XF. 2004

[15]Molecular mapping of leaf rust resistance gene LrBi16 in Chinese wheat cultivar Bimai 16. Zhang, Hai,Li, Xing,Li, Zaifeng,Liu, Daqun,Xia, Xianchun,He, Zhonghu,He, Zhonghu. 2011

[16]Quantitative trait loci underlying domestication and yield-related traits in an Oryza sativa x Oryza rufipogon advanced backcross population. Tan, Lubin,Liu, Fengxia,Wang, Guijuan,Ye, Sheng,Zhu, Zuofeng,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Tan, Lubin,Liu, Fengxia,Wang, Guijuan,Ye, Sheng,Zhu, Zuofeng,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Tan, Lubin,Liu, Fengxia,Wang, Guijuan,Ye, Sheng,Zhu, Zuofeng,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Tan, Lubin,Liu, Fengxia,Wang, Guijuan,Ye, Sheng,Zhu, Zuofeng,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Tan, Lubin,Liu, Fengxia,Wang, Guijuan,Ye, Sheng,Zhu, Zuofeng,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Zhang, Peijiang. 2008

[17]Genetic Analysis and Preliminary Mapping of a Highly Male-Sterile Gene in Foxtail Millet (Setaria italica L. Beauv.) Using SSR Markers. Wang Jun,An Yuan-huai,Guo Ping-yi,Wang Jun,Wang Zhi-lan,Yang Hui-qing,Yuan Feng,Guo Er-hu,Tian Gang,Li Hui-xia,Wang Yu-wen,Diao Xian-min. 2013

[18]QTL mapping for resistance of maize to grey leaf spot. Leng, Yifeng,Li, Lujiang,Wu, Yuanqi,Cao, Moju,Rong, Tingzhao,He, Wenzhu,Yang, Lin,Leng, Yifeng,Zhang, Biao,Yang, Junpin,Kang, Jiwei,Tang, Haitao,Deng, Luchang,Chen, Yunping. 2018

[19]Fine mapping of a large-effect QTL conferring Fusarium crown rot resistance on the long arm of chromosome 3B in hexaploid wheat. Zheng, Zhi,Ma, Jian,Stiller, Jiri,Manners, John M.,Liu, Chunji,Zheng, Zhi,Liu, Chunji,Zheng, Zhi,Liu, Chunji,Zheng, Zhi,Yan, Guijun,Ma, Jian,Zheng, You-Liang,Wei, Yuming,Zhao, Qiang,Feng, Qi,Han, Bin,Choulet, Frederic,Feuillet, Catherine. 2015

[20]Molecular markers for tracking variation in lipoxygenase activity in wheat breeding. Geng, Hongwei,Zhang, Yan,He, Zhonghu,Xia, Xianchun,Geng, Hongwei,Qu, Yanying,He, Zhonghu,Zhang, Liping,Appels, Rudi.

作者其他论文 更多>>