Development of a core set of SNP markers for the identification of upland cotton cultivars in China

文献类型: 外文期刊

第一作者: Kuang Meng

作者: Kuang Meng;WEI Shou-jun;WANG Yan-qin;ZHOU Da-yun;MA Lei;FANG Dan;YANG Wei-hua;MA Zhi-ying

作者机构:

关键词: upland cotton;core SNP;DUS;genotyping

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2016 年 15 卷 5 期

页码:

收录情况: SCI

摘要: Considering the advantages of single nucleotide polymorphisms (SNP) in genotyping and variety identification, the first set public SNP markers at Cotton Marker Database (http://www.cottonmarker.org/) were validated and screened across standard varieties of cotton distinctness, uniformity and stability (DUS) test, aiming to obtain an appropriate set of core SNP markers suitable for upland cotton cultivars in China. A total of 399 out of 1 005 SNPs from 270 loci including 170 insertions-deletions (InDels) were evaluated for their polymorphisms among 30 standard varieties using Sanger sequencing. As a result, 147 loci were sequenced successfully, 377 SNPs and 49 InDels markers were obtained. Among the 377 SNP markers, 333 markers (88.3%) were polymorphic between Gossypium hirsutum and G. barbadense, while 164 markers (43.5%) were polymorphic within upland cotton. As for InDel markers, the polymorphic rate is relatively lower than that of SNP both between species and within species. The homozygous DNA locus ratio of 121 SNPs was higher than 86.2% while that of other 43 SNPs was less than 70%. Only 64 SNPs displayed completely homozygous genotypes among all of the detected upland cotton varieties with 100% homozygous DNA locus ratio. At last, a set of 23 pairs of core SNPs were achieved in view of avoidance of linkage, with polymorphism information content (PIC) values varying from 0.21 to 0.38 with an average of 0.28. Genotype characteristics and genetic diversity were analyzed based on the set of core markers, while 40 pairs of core simple-sequence repeats (SSR) primers comprised of 10 sets of four multiplex PCR combinations were also used for analysis based on fluorescence detection system. Comparison results indicated that the genetic diversity level was almost equal, while various varieties were significantly different from each other. Genetic relationship revealed by SSR markers is related to geographic source to a certain extent. Meanwhile clustering results analyzed by SNP markers are more consistent with kinship, which demonstrated that the screen strategy for core SNP marker is effective.

分类号:

  • 相关文献

[1]Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.). Xueying Liu,Zhonghua Teng,Liu, Fang,Zhang, Zhengsheng,Jinxia Wang,Tiantian Wu,Zhiqin Zhang,Xianping Deng,Xiaomei Fang,Zhaoyun Tan,Iftikhar Ali,Dexin Liu,Jian Zhang,Dajun Liu,Fang Liu,Zhengsheng Zhang.

[2]Study of Cotton Matured Fibre Quality and the Super-Molecular Structure in Upland Cotton RILs. Yongbo Wang,Caihong Li,Haihong Shang,Botao Li,Chengbo Li,Aiying Liu,Youlu Yuan. 2014

[3]Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.). Mulugeta Seyoum Ademe,Du, Xiongming,Jia, Yinhua,Shoupu He,Zhaoe Pan,Junling Sun,Qinglian Wang,Hongde Qin,Jinhai Liu,Hui Liu,Jun Yang,Dongyong Xu,Jinlong Yang,Zhiying Ma,Jinbiao Zhang,Zhikun Li,Zhongmin Cai,Xuelin Zhang,Xin Zhang,Aifen Huang,Xianda Yi,Guanyin Zhou,Lin Li,Haiyong Zhu,Baoyin Pang,Liru Wang,Yinhua Jia,Xiongming Du.

[4]Analysis of decision-making coefficients of three main fiber quality traits for upland cotton (Gossypium hirsutum L.). Yongjun Mei,Wenming Hu,Shuli Fan,Meizhen Song,Chaoyou Pang,Shuxun Yu.

[5]Genome-wide comparative transcriptome analysis of CMS-D2 and its maintainer and restorer lines in upland cotton. Jianyong Wu,Wu, Jianyong,Xing, Chaozhu,Meng Zhang,Bingbing Zhang,Xuexian Zhang,Liping Guo,Tingxiang Qi,Hailin Wang,Jinfa Zhang,Chaozhu Xing. 2017

[6]Primary analysis of QTG contribution to heterosis in upland cotton. ZHANG XianLiang,LIU Fang,WANG Wei,LI ShaoHui,WANG ChunYing,ZHANG XiangDi,WANG YuHong,WANG KunBo. 2010

[7]Quantitative Trait Locus Mapping for Verticillium wilt Resistance in an Upland Cotton Recombinant Inbred Line Using SNP-Based High Density Genetic Map. Palanga, Koffi Kibalou. 2017

[8]Genome-wide characterization and expression analysis of MYB transcription factors in Gossypium hirsutum. Haron Salih,Wenfang Gong,Shoupu He,Gaofei Sun,Junling Sun,Xiongming Du. 2016

[9]Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. Muhammad Jamshed,Fei Jia,Juwu Gong,;Koffi Kibalou Palanga,Yuzhen Shi,Junwen Li,Haihong Shang,Aiying Liu,Tingting Chen,Zhen Zhang,Juan Cai,Qun Ge,Zhi Liu,Quanwei Lu,Xiaoying Deng,Yunna Tan,Harun or Rashid,Zareen Sarfraz,Murtaza Hassan,Wankui Gong,Youlu Yuan. 2016

[10]Single-base resolution methylomes of upland cotton (Gossypium hirsutum L.) reveal epigenome modifications in response to drought stress. Xuke Lu,Ye, Wuwei,Xiaoge Wang,Xiugui Chen,Na Shu,Junjuan Wang,Delong Wang,Shuai Wang,Weili Fan,Lixue Guo,Xiaoning Guo,Wuwei Ye. 2017

[11]High-Density Linkage Map Construction and Mapping of Salt-Tolerant QTLs at Seedling Stage in Upland Cotton Using Genotyping by Sequencing (GBS). Latyr Diouf,Du, Xiongming,Zhaoe Pan,Shou-Pu He,Wen-Fang Gong,Yin Hua Jia,Richard Odongo Magwanga,Kimbembe Romesh Eric Romy,Harun or Rashid,Joy Nyangasi Kirungu,Xiongming Du. 2017

[12]Genome-wide identification and characterization of SnRK2 gene family in cotton (Gossypium hirsutum L.). Zhao Liu,Xiaoyang Ge,Zuoren Yang,Li, Fuguang,Zhang, Xueyan,Chaojun Zhang,Ge Zhao,Eryong Chen,Ji Liu,Xueyan Zhang,Fuguang Li. 2017

[13]Dynamic QTL mapping for plant height in Upland cotton (Gossypium hirsutum). Shang, Lianguang,Abduweli, Abdugheni,Cai, Shihu,Liu, Fang,Wang, Kunbo,Wang, Yumei.

[14]Genome-wide SSR-based association mapping for fiber quality in nation-wide upland cotton inbreed cultivars in China. Nie, Xinhui,Huang, Cong,Zhao, Wenxia,Shen, Chao,Zhang, Beibei,Wang, Hantao,Yan, Zhenhua,Dai, Baoshen,Wang, Maojun,Zhang, Xianlong,Lin, Zhongxu,Nie, Xinhui,You, Chunyuan,Li, Wu. 2016

[15]Inheritance of resistance to Helicoverpa armigera of 3 kinds of transgenic Bt strains available in upland cotton in China. Tang, CM,Sun, J,Zhu, XF,Guo, WZ,Zhang, TZ,Shen, JL,Gao, CF,Zhou, WJ,Chen, ZX,Guo, SD.

[16]Genetic Analysis and QTL Detection on Fiber Traits Using Two Recombinant Inbred Lines and Their Backcross Populations in Upland Cotton. Lianguang Shang,Yumei Wang,Xiaocui Wang,Fang Liu,Abdugheni Abduweli,Shihu Cai,Yuhua Li,Lingling Ma,Kunbo Wang,Jinping Hua. 2016

[17]Main Effect QTL with Dominance Determines Heterosis for Dynamic Plant Height in Upland Cotton. Lianguang Shang,Lingling Ma,Yumei Wang,Ying Su,Xiaocui Wang,Yuhua Li,Abdugheni Abduweli,Shihu Cai,Fang Liu,Kunbo Wang,Jinping Hua. 2016

[18]Selection and Characterization of a Novel Photoperiod-Sensitive Male Sterile Line in Upland Cotton. Jianhui Ma,Hengling Wei,Ji Liu,Meizhen Song,Chaoyou Pang,Long Wang,Wenxiang Zhang,Shuli Fan,Shuxun Yu. 2013

[19]Analysis of decision-making coefficients of the lint yield of upland cotton (Gossypium hirsutum L.). Yongjun Mei,Weifeng Guo,Shuli Fan,Meizhen Song,Chaoyou Pang,Shuxun Yu.

[20]Identification of cotton SKP1-like gene GhSKP1 and its function in seed germination and taproot growth in tobacco. Delong Hu,Quanzhan Chen,Chao-Jun Zhang,Ye Wang,Bian-Jiang Zhang,Can-Ming Tang. 2013

作者其他论文 更多>>