A CIB1-LIKE transcription factor GmCIL10 from soybean positively regulates plant flowering

文献类型: 外文期刊

第一作者: Yang DeGuang

作者: Yang DeGuang;Zhao Wang;Meng YingYing;Li HongYu;Liu Bin

作者机构:

关键词: photoperiod;flowering time;soybean;Glycine max CIB1-LIKE10

期刊名称:SCIENCE CHINA-LIFE SCIENCES ( 影响因子:6.038; 五年影响因子:4.754 )

ISSN: 1674-7305

年卷期: 2015 年 58 卷 3 期

页码:

收录情况: SCI

摘要: CRYPTOCHROME-INTERACTING basic helix-loop-helix 1 (CIB1) is a well characterized transcriptional factor which promotes flowering through the physical interaction with the blue light receptor CRYPTOCHROME 2 (CRY2) in Arabidopsis. However, the role of its counterpart in crop species remains largely unknown. Here, we describe the isolation and characterization of a CIB1 homolog gene, Glycine max CIB1-LIKE10 (GmCIL10), from soybean genome. The mRNA expression of GmCIL10 in the unifoliate leaves shows a diunal rhythm in both long day (LD) and short day (SD) photoperiod, but it only oscillates with a circadian rhythm when the soybean is grown under LDs, indicating that the clock regulation of GmCIL10 transcription is LD photoperiod-dependent. Moreover, its mRNA expression varies in different tissue or organs, influenced by the develpomental stage, implying that GmCIL10 may be involved in the regulation of multiple developmental processes. Similar to CIB1, GmCIL10 was evident to be a nuclei protein and ectopically expression of GmCIL10 in transgenic Arabidopsis accelerates flowering under both LDs and SDs, implying that CIBs dependent regulation of flowering time is an evolutionarily conserved mechanism in different plant species.

分类号:

  • 相关文献

[1]Identification of photoperiod-regulated gene in soybean and functional analysis in Nicotiana benthamiana. Sha Ai-Hua,Shan Zhi-Hui,Zhang Xiao-Juan,Wu Xue-Jun,Qiu De-Zheng,Zhou Xin-An,Chen Yin-Hua,Sha Ai-Hua,Shan Zhi-Hui,Zhang Xiao-Juan,Wu Xue-Jun,Qiu De-Zheng,Zhou Xin-An.

[2]Characterising genes associated with flowering time in carrot (Daucus carota L.) using transcriptome analysis. Ou, C. -G.,Mao, J. -H.,Liu, L. -J.,Zhao, Z. -W.,Zhuang, F. -Y.,Li, C. -J.,Ren, H. -F..

[3]In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system. Wu, CX,Ma, QB,Yam, KM,Cheung, MY,Xu, YY,Han, TF,Lam, HM,Chong, K.

[4]Analysis of the independent- and interactive-photo-thermal effects on soybean flowering. Wu Ting-ting,Li Jin-yu,Wu Cun-xiang,Sun Shi,Mao Ting-ting,Jiang Bing-jun,Hou Wen-sheng,Han Tian-fu. 2015

[5]Isolation and expression analysis of the soybean GmPic gene. Sha, A. -H.,Zhou, X. -A.,Wu, H.,Fu, X. -M.,Zhang, Q. -L.,Guo, Q. -L.,Chen, Y. -H.,Sha, A. -H.. 2014

[6]Postflowering photoperiod regulates vegetative growth and reproductive development of soybean. Han, TF,Wu, CX,Tong, Z,Mentreddy, RS,Tan, KH,Gai, JY. 2006

[7]QTL effects and epistatic interaction for flowering time and branch number in a soybean mapping population of JapanesexChinese cultivars. Yang Guang,Xie Fu-ti,Zhai Hong,Wu Hong-yan,Zhang Xing-zheng,Wang Ya-ying,Li Yu-qiu,Hu Bo,Wang Lu,Xia Zheng-jun,Zhang Xing-zheng,Wang Ya-ying,Li Yu-qiu,Wang Lu,Yang Guang,Lu Shi-xiang,Wen Zi-xiang,Wang De-chun,Wang Shao-dong,Harada, Kyuya. 2017

[8]Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time. Wang, Yan,Gu, Yongzhe,Gao, Huihui,He, Chaoying,Gu, Yongzhe,Gao, Huihui,Qiu, Lijuan,Chang, Ruzhen,Chen, Shouyi. 2016

[9]Molecular identification of genes controlling flowering time, maturity, and photoperiod response in soybean. Xia, Zhengjun,Zhai, Hong,Liu, Baohui,Kong, Fanjiang,Yuan, Xiaohui,Wu, Hongyan,Xia, Zhengjun,Cober, Elroy R.,Harada, Kyuya. 2012

[10]Induction of Reproductive Diapause in Habrobracon hebetor (Hymenoptera: Braconidae) When Reared at Different Photoperiods at Low Temperatures. Chen, Haoliang,Zhang, Hongyu,Chen, Haoliang,Zhang, Hongyu,Chen, Haoliang,Zhu, Kun Yan,Throne, James E.. 2012

[11]A model for photothermal responses of flowering in rice .1. Model description and parameterization. Yin, XY,Kropff, MJ,Horie, T,Nakagawa, H,Centeno, HGS,Zhu, DF,Goudriaan, J. 1997

[12]Heterosis Expression of Hybrid Rice in Natural-and Short-Day Length Conditions. Zhao Bing-ran,Lv Qi-ming,Fu Xi-qin,Xin Ye-yun,Yuan Long-ping. 2015

[13]Analysis on DNA sequence of goat RFRP gene and its possible association with average daily sunshine duration. Huang, D. W.,Di, R.,Wang, J. X.,Chu, M. X.,He, J. N.,Cao, G. L.,Fang, L.,Feng, T.,Li, N..

[14]Effect of Photoperiod on Developmental Fitness in Ophraella communa (Coleoptera: Chrysomelidae). Luo, Min,Guo, Jian-Ying,Chen, Hong-Song,Wan, Fang-Hao.

[15]Adult reproductive diapause in Drosophila suzukii females. Lin, Qingcai,Zheng, Li,Yu, Yi,Zhang, Jinping,Zhang, Feng.

[16]Light dependency of life trails, reproduction, locomotion, and predation in the polyphagous ladybird Hippodamia variegata. Tan, Xiaoling,Zhao, Jing,Zhang, Fan,Wang, Su,Tan, Xiaoling,Zhao, Jing.

[17]Phenological responses of maize to changes in environment when grown at different latitudes in China. Liu, Yuee,Xie, Ruizhi,Hou, Peng,Li, Shaokun,Zhang, Houbao,Ming, Bo,Long, Haili,Liang, Shumin. 2013

[18]Effects of photoperiod and temperature on diapause induction in Conogethes punctiferalis (Lepidoptera: Pyralidae). Wang, Zhen-Ying,He, Kang-Lai,Ni, Xinzhi. 2014

[19]Cloning and expression characterization in hypothalamic Dio2/3 under a natural photoperiod in the domesticated Brandt's vole (Lasiopodomys brandtii). Chen, Yan,Guo, Cong,Liu, Lan,Chen, Yan,Wang, Dawei,Li, Ning,Liu, Xiaohui. 2018

[20]Effects of fasting, temperature, and photoperiod on preproghrelin mRNA expression in Chinese perch. Song, Yi,Zhao, Cheng,Liang, Xu-fang,He, Shan,Tian, Changxu,Cheng, Xiaoyan,Yuan, Xiaochen,Lv, Liyuan,Guo, Wenjie,Song, Yi,Zhao, Cheng,Liang, Xu-fang,He, Shan,Tian, Changxu,Cheng, Xiaoyan,Yuan, Xiaochen,Lv, Liyuan,Guo, Wenjie,Xue, Min,Tao, Ya-Xiong.

作者其他论文 更多>>