Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.)

文献类型: 外文期刊

第一作者: Wang Shun-li

作者: Wang Shun-li;Ku, Seong Sub;Choi, Pil Son;Ye Xing-guo;He Cong-fen;Kwon, Suk Yoon

作者机构:

关键词: Cucumis sativus L.;plant regeneration;genetic transformation;positive selection system

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2015 年 14 卷 3 期

页码:

收录情况: SCI

摘要: Genetic transformation is an important technique for functional genomics study and genetic improvement of plants. Until now, Agrobacterium-mediated transformation methods using cotyledon as explants has been the major approach for cucumber, and its frequency has been up to 23%. For example, significantly enhancement of the transformation efficiency of this plant species was achieved from the cotyledon explants of the cultivar Poinsett 76 infected by Agrobacterium strains EHA105 with efficient positive selection system in lots of experiments. This review is to summarize some key factors influencing cucumber regeneration and genetic transformation, including target genes, selection systems and the ways of transgene introduction, and then to put forward some strategies for the increasing of cucumber transformation efficiency. In the future, it is high possible for cucumber to be potential bioreactor to produce vaccine and biomaterials for human beings.

分类号:

  • 相关文献

[1]Cucumber (Cucumis sativus L.) seed performance as influenced by ovary and ovule position. Jing, HC,Bergervoet, JHW,Jalink, H,Klooster, M,Du, SL,Bino, RJ,Hilhorst, HWM,Groot, SPC. 2000

[2]Molecular mapping and candidate gene analysis for yellow fruit flesh in cucumber. Lu, H. W.,Miao, H.,Tian, G. L.,Gu, X. F.,Zhang, S. P.,Wehner, T. C..

[3]Genome-wide identification, phylogeny and expression analysis of the lipoxygenase gene family in cucumber. Jiang, L. W.,Liu, X. H.. 2011

[4]A major quantitative trait locus conferring resistance to fusarium wilt was detected in cucumber by using recombinant inbred lines. Zhang, Sheng-ping,Miao, Han,Yang, Yu-hong,Xie, Bing-yan,Wang, Ye,Gu, Xing-fang.

[5]Gibberellin A(3) pretreatment increased antioxidative capacity of cucumber radicles and hypocotyls under suboptimal temperature. Li, Qingzhu,Li, Chaohan,Shi, Qinghua,Yu, Xianchang. 2011

[6]A CsYcf54 variant conferring light green coloration in cucumber. Wang, Xin,Yang, Li,Gao, Dongli,Huang, Sanwen,Wang, Xin,Zhang, Chunzhi,Yang, Li,Gao, Dongli,Huang, Sanwen,Chen, Huiming.

[7]Molecular Mapping and Candidate Gene Analysis for Numerous Spines on the Fruit of Cucumber. Zhang, Shengping,Liu, Shulin,Miao, Han,Wang, Min,Liu, Panna,Gu, Xingfang,Wehner, Todd C..

[8]Plant regeneration via somatic embryogenesis in cotton. Bao-Hong Zhang,Fang Liu,Chang-Bing Yao. 2000

[9]Highly efficient plant regeneration through somatic embryogenesis in 20 elite commercial cotton (Gossypium hirsutum L.) cultivars. Baohong Zhang,Qinglian Wang,Fang Liu,Kunbo Wang,Taylor P. Frazier. 2009

[10]Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos. Zhang Wei,Wang Xin-min,Yin Gui-xiang,Wang Ke,Du Li-pu,Xiao Le-le,Ye Xing-guo,Fan Rong. 2015

[11]Plant regeneration system from cotyledons-derived calluses cultures of Stylosanthes guianensis cv. 'Reyan 2'. Yuan, Xuejun,Liu, Guodao,Yuan, Xuejun,Wang, Zhiyong,Liao, Li,Wang, Zhiyong. 2011

[12]Plant regeneration from cotyledon of Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How). He, Xiaoming,Xie, Dasen,Peng, Qingwu,Mu, Lixia. 2007

[13]Plant regeneration from cell suspension-derived protoplasts of Populus x beijingensis. Cai, Xiao,Kang, Xiang-Yang,Cai, Xiao. 2014

[14]Direct somatic embryogenesis from leaf and petiole explants of Spathiphyllum 'Supreme' and analysis of regenerants using flow cytometry. Zhao, Jietang,Henny, Richard J.,Chen, Jianjun,Cui, Jin,Liu, Juanxu,Liao, Feixiong,Chen, Jianjun. 2012

[15]Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimizing selection regimes and utilizing cryopreserved cell suspensions. Li, P,Hanania, U,Sahar, N,Mawassi, M,Gafny, R,Sela, I,Tanne, E,Perl, A.

[16]Enhanced Agrobacterium-mediated Transformation of Embryogenic Calli of Upland Cotton via Efficient Selection and Timely Subculture of Somatic Embryos. Wu, Shen-Jie,Wang, Hai-Hai,Li, Fei-Fei,Chen, Tian-Zi,Zhang, Jie,Jiang, Yan-Jie,Ding, Yezhang,Guo, Wang-Zhen,Zhang, Tian-Zhen,Wu, Shen-Jie.

[17]Protoplast isolation and plant regeneration of different doubled haploid lines of cauliflower (Brassica oleracea var. botrytis). Sheng, Xiaoguang,Zhao, Zhenqing,Yu, Huifang,Wang, Jiansheng,Xiaohui, Zhang,Gu, Honghui. 2011

[18]High-Efficiency Plant Regeneration from Immature Inflorescence Derived Callus Cultures of Two Phenotypically Distinct Accessions of Centipedegrass (Eremochloa ophiuroides). Ma, Jingjing,Wang, Yi,Zong, Junqin,Zhang, Bing,Chen, Jingbo,Li, Dandan,Li, Ling,Guo, Hailin,Liu, Jianxiu,Li, Jianjian,She, Jianming. 2018

[19]High-frequency plantlet regeneration by somatic embryogenesis from mature zygotic embryos of onion. Wu, X.,Yang, F.,Piao, X. C.,Li, K. H.,Lian, M. L.,Dai, Y..

[20]The Influence of Plant Growth Regulators and Light Quality on Somatic Embryogenesis in China Rose (Rosa chinensis Jacq.). Chen, Ji-Ren,Wu, Lian,Hu, Bo-Wen,Yi, Xing,Deng, Zi-Niu,Xiong, Xing-Yao,Liu, Rong,Deng, Zi-Niu,Xiong, Xing-Yao,Xiong, Xing-Yao. 2014

作者其他论文 更多>>