Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress

文献类型: 外文期刊

第一作者: Xue, Dawei

作者: Xue, Dawei;Deng, Xiangxiong;Zhang, Xiaoqin;Xu, Xiangbin;Qian, Qian;Xue, Dawei;Hu, Jiang;Zeng, Dali;Guo, Longbiao;Qian, Qian;Jiang, Hua;Wang, Hua

作者机构:

关键词: Rice;Cadmium;Proteomic;Quantitative PCR;Gene chip

期刊名称:JOURNAL OF HAZARDOUS MATERIALS ( 影响因子:10.588; 五年影响因子:10.129 )

ISSN: 0304-3894

年卷期: 2014 年 280 卷

页码:

收录情况: SCI

摘要: Rice is one of the most important staple crops. During the growth season, rice plants are inevitably subjected to numerous stresses, among which heavy metal stress represented by cadmium contamination not only hindering the yield of rice but also affecting the food safety by Cd accumulating in rice grains. The mechanism of Cd accumulation in rice grains has not been well elucidated. In this study, we compare the proteomic difference between two genotypes with different Cd accumulation ability in grains. Verification of differentially expressed protein-encoding genes was analyzing by quantitative PCR (QPCR) and reanalysis of microarray expression data. Forty-seven proteins in total were successfully identified through proteomic screening. GO and KEGG enrichment analysis showed Cd accumulation triggered stress-related pathways in the cells, and strongly affecting metabolic pathways. Many proteins associated with nutrient reservoir and starch-related enzyme were identified in this study suggesting that a considerably damage on grain quality was caused. The results also implied stress response was initiated by the abnormal cells and the transmission of signals may mediated by reactive oxygen species (ROS). Our research will provide new insights into Cd accumulation in rice grain under Cd stress. (C) 2014 Elsevier B.V. All rights reserved.

分类号:

  • 相关文献

[1]Validation of a rice specific gene, sucrose phosphate synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. Ding, JY,Jia, JW,Yang, LT,Wen, HB,Zhang, CM,Liu, WX,Zhang, DB. 2004

[2]Distribution Characteristics of Soil Cadmium in Different Textured Paddy Soil Profiles and Its Relevance with Cadmium Uptake by Crops. Wang Zheng-yin,Qin Yu-sheng,Zhan Shao-jun,Yu Hua,Tu Shi-hua. 2013

[3]Assessment of Homogeneity and Minimum Sample Mass for Cadmium Analysis in Powdered Certified Reference Materials and Real Rice Samples by Solid Sampling Electrothermal Vaporization Atomic Fluorescence Spectrometry. Mao, Xuefei,Huang, Yatao,Zhang, Lihua,Tang, Xiaoyan,Zhou, Jian,Qian, Yongzhong,Wang, Min,Mao, Xuefei,Huang, Yatao,Zhang, Lihua,Tang, Xiaoyan,Zhou, Jian,Qian, Yongzhong,Wang, Min,Liu, Jixin,Feng, Li.

[4]Increasing CO2 differentially affects essential and non-essential amino acid concentration of rice grains grown in cadmium-contaminated soils. Wu, Huibin,Wu, Huibin,Song, Zhengguo,Wang, Xiao,Liu, Zhongqi,Tang, Shirong.

[5]Heavy metal contaminations in soil-rice system: source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province, China. Wang, Xiangqin,Liu Chuanping,Li, Fangbai,Xu, Xianghua,Lv, Yahui,Zeng, Xiaoduo.

[6]Cadmium fate and tolerance in rice cultivars. Zhang, Jie,Sun, Wanchun,Li, Zhaojun,Liang, Yongchao,Zhang, Jie,Song, Alin,Liang, Yongchao.

[7]Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities. Hu, Pengjie,Li, Zhu,Yuan, Cheng,Huang, Jiexue,Huang, Yujuan,Luo, Yongming,Wu, Longhua,Ouyang, Younan,Luo, Yongming,Christie, Peter. 2013

[8]Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils. Yang, Yongjie,Chen, Jiangmin,Huang, Qina,Tang, Shaoqing,Hu, Peisong,Shao, Guosheng,Chen, Jiangmin,Wang, Jianlong. 2018

[9]Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Yang, Yongjie,Fu, Guanfu,Chen, Tingting,Tao, Longxing,Xiong, Jie,Chen, Ruijie,Xiong, Jie,Chen, Ruijie.

[10]Distribution of selenium and cadmium in soil-rice system of selenium-rich area in Hainan, China. Wang, Dengfeng,Wei, Zhiyuan,Qi, Zhiping,Tang, Shumei. 2014

[11]Iron nutrition affects cadmium accumulation and toxicity in rice plants. Shao, Guosheng,Chen, Mingxue,Wang, Weixia,Mon, Renxiang,Zhang, Guoping.

[12]Measuring the damage of heavy metal cadmium in rice seedlings by SRAP analysis combined with physiological and biochemical parameters. Zhang, Xiaoqin,Chen, Huinan,Lu, Wenyi,Pan, Jiangjie,Qian, Qian,Xue, Dawei,Jiang, Hua,Qian, Qian.

[13]Robust method for the analysis of phytochelatins in rice by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry based on polymeric column materials. Yu, Shasha,Bian, Yingfang,Zhou, Rong,Mou, Renxiang,Chen, Mingxue,Cao, Zhaoyun.

[14]Effect of silicon fertilizers on cadmium in rice (Oryza sativa) tissue at tillering stage. Ji, Xionghui,Liu, Saihua,Juan, Huang,Bocharnikova, Elena A.,Matichenkov, Vladimir V..

[15]Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Guo, B.,Liang, Y. C.,Zhu, Y. G.,Zhao, F. J..

[16]Periphyton growth reduces cadmium but enhances arsenic accumulation in rice (Oryza sativa) seedlings from contaminated soil. Shi, Gao Ling,Ma, Hong Xiang,Lu, Hai Ying,Liu, Jun Zhuo,Wu, Yong Hong,Lou, Lai Qing,Tang, Xian Jin.

[17]Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa). Yan, Yong-Feng,Lestari, Puji,Lee, Kyu-Jong,Kim, Moon Young,Lee, Suk-Ha,Lee, Byun-Woo,Yan, Yong-Feng,Lee, Kyu-Jong,Kim, Moon Young,Lee, Suk-Ha,Lee, Byun-Woo,Yan, Yong-Feng,Lestari, Puji.

[18]Expression of sulfur uptake assimilation-related genes in response to cadmium, bensulfuron-methyl and their co-contamination in rice roots. Zhou, Jian,Wang, Zegang,Huang, Zhiwei,Han, Zhuo,Ge, Cailin,Lu, Chao,Zhang, Jianfeng,Jiang, Huimin,Yang, Juncheng.

[19]Gene expression profiling in shoot apical meristem of Gossypium hirsutum. M. Wu,J. Li,S. L. Fan,M. Z. Song,C. Y. Pang,J. H. Wei,J. W. Yu,J. F. Zhang,S. X. Yu. 2015

[20]cDNA Microarray on Differentially Expressed Genes of Liver Tissue Between Bulls and Steers of Simmental. Wang, Shuhui,Lian, Zhengxing,Wang, Shuhui,Zhou, Zhengkui,Huai, Yahong,Ji, Aiguo,Gao, Xue,Li, Junya,Chen, Jinbao,Xu, Shangzhong,Wang, Shuxin. 2011

作者其他论文 更多>>