Theory and application for the promotion of wheat production in China: past, present and future

文献类型: 外文期刊

第一作者: Xu, Zhenzhu

作者: Xu, Zhenzhu;Yu, Zhenwen;Xu, Zhenzhu;Zhao, Junye

作者机构:

关键词: application fertilizer regime;Chinese food security;climate change;grain quality;high yield;water resource;wheat production technology

期刊名称:JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE ( 影响因子:3.638; 五年影响因子:3.802 )

ISSN: 0022-5142

年卷期: 2013 年 93 卷 10 期

页码:

收录情况: SCI

摘要: Food security is becoming a crucial concern worldwide. In this study, we focus on wheat - a staple crop in China - as a model to review its history, status quo and future scenarios, with regard to key production technologies and management practices for wheat production and associated food security issues since the new era in China: the post-1949 era. First, the dominant technologies and management practices over the past 60years are reviewed. Secondly, we outline several key innovative technologies and their theoretical bases over the last decade, including (i) prohibiting excessively early senescence at a later growth stage to maintain viable leaves with higher photosynthetic capacity, (ii) postponing top dressing nitrogen application to balance carbon and nitrogen nutrition, and (iii) achieving both high yield and better grain quality mainly by increasing soil productivity and balancing the ratio of nutrient elements. Finally, concerns such as water shortages and excessive application of chemical fertilizers are presented. Nevertheless, under high negative conditions, including global warming, rapid population growth, decreasing amounts of arable land, increasing competition with cash crops and severe environmental pollution, we conclude that domestic food production will be able to meet Chinese demand in the mid to long term, because increasingly innovative technologies and improved management practices have been and may continue to be applied appropriately. (c) 2013 Society of Chemical Industry

分类号:

  • 相关文献

[1]Farmland shift due to climate warming and impacts on temporal-spatial distributions of water resources in a middle-high latitude agricultural watershed. Ouyang, Wei,Gao, Xiang,Hao, Zengchao,Shi, Yandan,Hao, Fanghua,Liu, Hongbin.

[2]IJABE SWAT Special Issue: Innovative modeling solutions for water resource problems. Gassman, Philip W.,Wang Yingkuan. 2015

[3]Research progress on reduced lodging of high-yield and -density maize. Xue Jun,Xie Rui-zhi,Wang Ke-ru,Hou Peng,Ming Bo,Li Shao-kun,Zhang Wang-feng,Gou Ling. 2017

[4]Improving Yield and Nitrogen Use Efficiency Simultaneously for Maize and Wheat in China: A Review. Meng Qingfeng,Yue Shanchao,Hou Peng,Cui Zhenling,Chen Xinping,Meng Qingfeng,Hou Peng. 2016

[5]Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha(-1). Liu, Guangzhou,Hou, Peng,Xie, Ruizhi,Ming, Bo,Wang, Keru,Li, Shaokun,Xu, Wenjuan,Liu, Wanmao,Yang, Yunshan. 2017

[6]Soil nitrate-N levels required for high yield maize production in the North China Plain. Cui, Zhenling,Zhang, Fusuo,Miao, Yuxin,Sun, Qinping,Li, Fei,Chen, Xinping,Li, Junliang,Ye, Youliang,Yang, Zhiping,Zhang, Qiang,Liu, Chunsheng.

[7]Manipulating Planting Density and Nitrogen Fertilizer Application to Improve Yield and Reduce Environmental Impact in Chinese Maize Production. Xu, Cailong,Huang, Shoubing,Tian, Beijing,Ren, Jianhong,Meng, Qingfeng,Wang, Pu,Xu, Cailong. 2017

[8]Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Xu, Wenjuan,Liu, Chaowei,Zhang, Guoqiang,Li, Shaokun,Wang, Keru,Xie, Ruizhi,Ming, Bo,Liu, Guangzhou,Fan, Panpan,Li, Shaokun,Hou, Peng,Wang, Yonghong,Zhao, Rulang.

[9]'Taishanhong' Pomegranate and Its Cultivation Techniques with High Yield and Good Quality. Ran, Kun,Sun, Xiaoli,Wang, Shaomin.

[10]Optimal fertilization for high yield and good quality of waxy sorghum (Sorghum bicolor L. Moench). Wang, Can,Zhou, Lingbo,Zhang, Guobing,Xu, Yan,Zhang, Liyi,Gao, Xu,Gao, Jie,Jiang, Ne,Shao, Mingbo,Wang, Can,Zhou, Lingbo,Zhang, Guobing,Xu, Yan,Shao, Mingbo.

[11]Development of elite restoring lines by integrating blast resistance and low amylose content using MAS. Xiao Wu-ming,Peng Xin,Luo Li-xin,Liang Ke-qin,Wang Jia-feng,Huang Ming,Liu Yong-zhu,Guo Tao,Luo Wen-long,Wang Hui,Chen Zhi-qiang,Yang Qi-yun,Zhu Xiao-yuan. 2018

[12]Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Zhang, Hua,Xu, Heng,Feng, Mengjie,Zhu, Ying. 2018

[13]Monitoring quality of winter wheat based on the HJ satellite images. Wang Yan,Li Cunjun. 2012

[14]Physiological Basis of Improved Performance of Super Rice (Oryza sativa) to Deep Placed Fertilizer with Precision Hill-drilling Machine. Kargbo, M. B.,Pan, Shenggang,Mo, Zhaowen,Tian, Hua,Hossain, Md. Faruque,Ashraf, Umair,Tang, Xiangru,Pan, Shenggang,Mo, Zhaowen,Tian, Hua,Ashraf, Umair,Tang, Xiangru,Kargbo, M. B.,Wang, Zaiman,Luo, Xiwen. 2016

[15]Influences of the disease resistance conferred by the individual transgenes, Pi-d2, Pi-d3 and Xa21, on the transgenic rice plants in yield and grain quality. Hao, Z. N.,Wang, L. P.,Tao, R. X.,Wang, J.,Wang, J.. 2009

[16]Long-term Effect of Year-Round Tillage Patterns on Yield and Grain Quality of Wheat. Wu, Xiaoli,Li, Chaosu,Wu, Chun,Ma, Xiaoling,Huang, Gang,Tang, Yonglu,Wu, Xiaoli,Li, Chaosu.

[17]Effects of short-term high temperature on grain quality and starch granules of rice (Oryza sativa L.) at post-anthesis stage. Chen, Jianlin,Tang, Liang,Shi, Peihua,Yang, Baohua,Sun, Ting,Cao, Weixing,Zhu, Yan,Chen, Jianlin.

[18]Map-based cloning proves qGC-6, a major QTL for gel consistency of japonica/indica cross, responds by Waxy in rice (Oryza sativa L.). Su, Yan,Rao, Yuchun,Hu, Shikai,Yang, Yaolong,Gao, Zhenyu,Zhang, Guanghen,Liu, Jian,Hu, Jiang,Yan, Meixian,Dong, Guojun,Zhu, Li,Guo, Longbiao,Qian, Qian,Zeng, Dali.

[19]Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wx(b) supercript stop pre-mRNAs in rice (Oryza sativa L.). Zeng, Dali,Yan, Meixian,Wang, Yonghong,Liu, Xinfang,Qian, Qian,Li, Jiayang.

[20]Association Mapping and Marker Development of Genes for Starch Lysophospholipid Synthesis in Rice. Tong Chuan,Bao Jin-Song,Tong Chuan,Liu Lei,Waters, Daniel L. E.. 2016

作者其他论文 更多>>