Integration and Characterization of T-DNA Insertion in Upland Cotton

文献类型: 外文期刊

第一作者: Xiaojie YANG

作者: Xiaojie YANG;Fuguang LI;Xueyan ZHANG;Kun LIU;Qianhua WANG;Chaojun ZHANG;Chuanliang LIU;Wei ZHU;Guofang SHAN;Chee-Kok CHIN;Weiping FANG

作者机构:

关键词: cotton (Gossypium hirsutum L.);deletion of border;genetic transformation;transgene copy;vector integration

期刊名称:CZECH JOURNAL OF GENETICS AND PLANT BREEDING ( 影响因子:0.865; 五年影响因子:1.017 )

ISSN: 1212-1975

年卷期: 2013 年 49 卷 2 期

页码:

收录情况: SCI

摘要: Copy numbers were evaluated by real-time quantitative PCR, and 149 junctions of T-DNA were isolated by thermal asymmetric interlaced PCR from 92 independent transgenic cotton lines transformed by Agrobacterium tumefaciens strain LBA4404. Real-time quantitative PCR results showed that 46% had integration of one or two T-DNA copies, 54% had three or more copies. Among 63 amplified products at LB junctions, 51% showed cotransformation of the vector backbone, 30% retained a portion of LB ranging from 3 to 23 bp, and 19% showed deletions ranging from 1 to 148 bp from the LB inner end. In contrast, all of the cleavage sites were located in the inner region of RB. The distribution of T-DNA insertions in upland cotton genome included coding sequences, transposons, plastid-derived sequences and microsatellites.

分类号:

  • 相关文献

[1]Development of glyphosate-tolerant transgenic cotton plants harboring the G2-aroA gene. Zhang Xiao-bing,Tang Qiao-ling,Wang Xu-jing,Wang Zhi-xing,Zhang Xiao-bing. 2017

[2]Photosynthetic characteristics of the subtending leaf of cotton boll at different fruiting branch nodes and their relationships with lint yield and fiber quality. Jingran Liu,Yali Meng,Fengjuan Lv,Ji Chen,Yina Ma,Youhua Wang,Binglin Chen,Lei Zhang,Zhiguo Zhou. 2015

[3]Photosynthetic characteristics of the subtending leaf and the relationships with lint yield and fiber quality in the late-planted cotton. Jingran Liu,Yali Meng,Binglin Chen,Zhiguo Zhou,Yina Ma,Fengjuan Lv,Ji Chen,Youhua Wang.

[4]Effect of late planting and shading on cotton yield and fiber quality formation. Liu, Jingran,Meng, Yali,Chen, Ji,Lv, Fengjuan,Ma, Yina,Chen, Binglin,Wang, Youhua,Zhou, Zhiguo,Liu, Jingran,Oosterhuis, Derrick M..

[5]Response of the enzymes to nitrogen applications in cotton fiber (Gossypium hirsutum L.) and their relationships with fiber strength. Wang YouHua,Feng Ying,Xu NaiYin,Chen BingLin,Ma RongHui,Zhou ZhiGuo,Xu NaiYin. 2009

[6]Relationship between plant canopy characteristics and photosynthetic productivity in diverse cultivars of cotton (Gossypium hirsutum L.). Feng, Guoyi,Luo, Honghai,Zhang, Yali,Gou, Ling,Yao, Yandi,Zhang, Wangfeng,Feng, Guoyi,Lin, Yongzeng. 2016

[7]Effect of cropping system on cotton biomass accumulation and yield formation in double-cropped wheat-cotton. Du, X.,Chen, B.,Meng, Y.,Zhao, W.,Zhang, Y.,Shen, T.,Wang, Y.,Zhou, Z.,Du, X.. 2016

[8]Mitochondrial SCAR and SSR Markers for distinguishing cytoplasmic male sterile lines from their isogenic maintainer lines in cotton. Zhang, Xiao,Meng, Zhigang,Zhou, Tao,Sun, Guoqing,Shi, Ji,Zhang, Rui,Guo, Sandui,Zhang, Xiao,Yu, Yuanhua.

[9]Plant density influences fiber sucrose metabolism in relation to cotton fiber quality. Meng, Yali,Lv, Fengjuan,Zhao, Wenqing,Chen, Ji,Zhu, Lili,Wang, Youhua,Chen, Binglin,Zhou, Zhiguo,Lv, Fengjuan.

[10]Overexpression of an Aeluropus littoralis Parl. potassium transporter gene, AlHAK1, in cotton enhances potassium uptake and salt tolerance. Liu, J. F.,Zhang, S. L.,Tang, H. L.,Dong, L. J.,Wu, L. Z.,Liu, L. D.,Che, W. L..

[11]Effects of wheat straw incorporation in cotton-wheat double cropping system on nutrient status and growth in cotton. Yu, Chaoran,Wang, Xiaojun,Hu, Bo,Meng, Yali,Zhou, Zhiguo,Yang, Changqin,Liu, Ruixian,Sui, Ning.

[12]Nitrogen use efficiency of cotton (Gossypium hirsutum L.) as influenced by wheat-cotton cropping systems. Du, Xiangbei,Chen, Binglin,Zhang, Yuxiao,Zhao, Wenqing,Shen, Tianyao,Zhou, Zhiguo,Meng, Yali,Du, Xiangbei.

[13]QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Fu-Ding Sun,Jian-Hong Zhang,Shu-Fang Wang,Wan-Kui Gong,Yu-Zhen Shi,Ai-Ying Liu,Jun-Wen Li,Ju-Wu Gong,Hai-Hong Shang,You-Lu Yuan.

[14]Genetically Transformed Strawberry (Fragaria x ananassa Duch.) with Cold-Inducible Transcription Factor CBF1. Jin, W. M.,Dong, J.,Liu, Y.,Zhang, Y. P.,Pan, Q. H.. 2009

[15]Improved Resistance to Cucumber mosaic virus in Petunia Transformed with Non-Cytotoxic Pokeweed Antiviral Protein Gene. Li, Yu,Chen, Dinghu,Wang, Xifeng,Feng, Hui,Chen, Dinghu. 2013

[16]Research Progress on Tissue Culture and Genetic Transformation of Kenaf (Hibiscus cannabinus). An, Xia,Jin, Guanrong,Ma, GuangYing,Jin, Liang,Luo, Xiahong,Chen, Changli,Shi, Xiaohua,Li, Wenlue,Zhu, Guanlin,Zhang, Jingyu,Dai, Lunjin,Zhou, Jun,Wei, Wei,Chen, Cong,Deng, Gang. 2017

[17]Stable Expression of Basic Fibroblast Growth Factor in Chloroplasts of Tobacco. Wang, Yun-Peng,Wei, Zheng-Yi,Zhong, Xiao-Fang,Lin, Chun-Jing,Zhang, Yu-Ying,Liu, Yan-Zhi,Xing, Shao-Chen,Cai, Yu-Hong,Ma, Jian,Zhang, Yu-Ying. 2016

[18]Expression of the B Subunit of Escherichia coli Heat-Labile Enterotoxin in Transformed Bombyx mori BmN Cells. Zhou, Wen-Lin,Cao, Jin-Ru,Ye, Ai-Hong,Weng, Hong-Biao,He, Li-Hua,Wang, Yong-Qiang,Gong, Cheng-Liang,Xue, Ren-Yu,Cao, Guang-Li,Gong, Cheng-Liang,Xue, Ren-Yu,Cao, Guang-Li. 2012

[19]Transformation of a Novel Drought-Response Transcription Factor Gene PeDREB2b into White Clover via Soaking Seeds with Agrobacterium tumefaciens. Lei, J. -l.,Wang, D.,Cao, H.,Xie, L. -s.,Wu, Y. -m.,Liu, S.,Huang, D. -g.. 2012

[20]In planta soybean transformation technologies developed in China: Procedure, confirmation and field performance. Hu, CY,Wang, LZ. 1999

作者其他论文 更多>>