An AT-hook gene is required for palea formation and floral organ number control in rice

文献类型: 外文期刊

第一作者: Jin, Yun

作者: Jin, Yun;Tong, Hongning;Tang, Jinfu;Li, Dayong;Zhao, Xianfeng;Li, Xiaobing;Jiao, Yuling;Chu, Chengcai;Zhu, Lihuang;Jin, Yun;Tong, Hongning;Tang, Jinfu;Li, Dayong;Zhao, Xianfeng;Li, Xiaobing;Jiao, Yuling;Chu, Chengcai;Zhu, Lihuang;Luo, Qiong;Wang, Aiju;Cheng, Zhijun;Wan, Jianmin

作者机构:

关键词: Rice;Flower;Palea;Meristem

期刊名称:DEVELOPMENTAL BIOLOGY ( 影响因子:3.582; 五年影响因子:3.587 )

ISSN: 0012-1606

年卷期: 2011 年 359 卷 2 期

页码:

收录情况: SCI

摘要: Grasses have highly specialized flowers and their outer floral organ identity remains unclear. In this study, we identified and characterized rice mutants that specifically disrupted the development of palea, one of the outer whorl floral organs. The depressed palea1 (dp1) mutants show a primary defect in the main structure of palea, implying that palea is a fusion between the main structure and marginal tissues on both sides. The sterile lemma at the pales side is occasionally elongated in dp1 mutants. In addition, we found a floral organ number increase in dp1 mutants at low penetration. Both the sterile lemma elongation and the floral organ number increase phenotype are enhanced by the mutation of an independent gene SMALL DEGENERATIVE PALEA1 (SDP1), whose single mutation causes reduced pales size. E function and presumable A function floral homeotic genes were found suppressed in the dp1-2 mutant. We identified the DP1 gene by map-based cloning and found it encodes a nuclear-localized AT-hook DNA binding protein, suggesting a grass-specific role of chromatin architecture modification in flower development. The DP1 enhancer SDP1 was also positional cloned, and was found identical to the recently reported RETARDED PALEA1 (REP]) gene encoding a TCP family transcription factor. We further found that SDP1/REP1 is downstreamly regulated by DP1. (C)11 Elsevier Inc. All rights reserved.

分类号:

  • 相关文献

[1]Characterization of Tomato Transcription Factor WUSCHEL and Functional Study in Arabidopsis. Wang Xiang,Wang Xin-guo,Ren Jiang-ping,Ma Ying,Yin Jun,Wang Xiang. 2012

[2]CLE Peptides in Plants: Proteolytic Processing, Structure-Activity Relationship, and Ligand-Receptor Interaction. Gao, Xiaoming,Guo, Yongfeng. 2012

[3]Volatile constituents of the leaves and flowers of Salvia przewalskii Maxim. from Tibet. Liu, JM,Nan, P,Tsering, Q,Tsering, T,Bai, ZK,Wang, L,Liu, ZJ,Zhong, Y. 2006

[4]Genome-Wide Identification of the MIKC-Type MADS-Box Gene Family in Gossypium hirsutum L. Unravels Their Roles in Flowering. Zhongying Ren,Daoqian Yu,Li, Fuguang,Yang, Zuoren,Zhaoen Yang,Changfeng Li,Ghulam Qanmber,Yi Li,Jie Li,Zhao Liu,Lili Lu,Lingling Wang,Hua Zhang,Quanjia Chen,Fuguang Li,Zuoren Yang. 2017

[5]Selection of Reliable Reference Genes for Gene Expression Studies on Rhododendron molle G. Don. Xiao, Zheng,Sun, Xiaobo,Liu, Xiaoqing,Li, Chang,He, Lisi,Chen, Shangping,Su, Jiale. 2016

[6]Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars. Chuang, Yao-Nung,Chiou, Chung-Yi,Chin, Dan-Chu,Yeh, Kai-Wun,Liu, Xiao-Jing,Shen, Fu-Quan.

[7]Phytochrome B Negatively Affects Cold Tolerance by Regulating OsDREB1 Gene Expression through Phytochrome Interacting Factor-Like Protein OsPIL16 in Rice. He, Yanan,Li, Yaping,Cui, Lixin,Xie, Lixia,Zheng, Chongke,Zhou, Guanhua,Zhou, Jinjun,Xie, Xianzhi,Li, Yaping,Cui, Lixin. 2016

[8]A Kelch Motif-Containing Serine/Threonine Protein Phosphatase Determines the Large Grain QTL Trait in Rice. Hu, Zejun,Sun, Fan,Xin, Xiaoyun,Qian, Xi,Yang, Jingshui,Luo, Xiaojin,Hu, Zejun,He, Haohua,Wang, Wenxiang,Zhang, Shiyong. 2012

[9]Genome-wide identification of microRNAs and their targets in wild type and phyB mutant provides a key link between microRNAs and the phyB-mediated light signaling pathway in rice. Sun, Wei,wu, Xiu,Xie, Xianzhi,Xu, Xiao Hui,Lu, Xingbo,Sun, Hongwei,Wang, Yong. 2015

[10]Overexpression of an S-like ribonuclease gene, OsRNS4, confers enhanced tolerance to high salinity and hyposensitivity to phytochrome-mediated light signals in rice. Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Li, Yaping,Liu, Qianqian,Xie, Xianzhi,Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Xie, Xianzhi. 2014

[11]Distribution Characteristics of Soil Cadmium in Different Textured Paddy Soil Profiles and Its Relevance with Cadmium Uptake by Crops. Wang Zheng-yin,Qin Yu-sheng,Zhan Shao-jun,Yu Hua,Tu Shi-hua. 2013

[12]Overexpression of OsPIL15, a phytochromeinteracting factor- like protein gene, represses etiolated seedling growth in rice. Zhou, Jinjun,Liu, Qianqian,Wang, Yingying,Zhang, Shiyong,Cheng, Huimin,Yan, Lihua,Li, Li,Xie, Xianzhi,Zhou, Jinjun,Wang, Yingying,Zhang, Shiyong,Xie, Xianzhi,Liu, Qianqian,Xie, Xianzhi,Zhang, Fang,Chen, Fan. 2014

[13]DISTRIBUTION CHARACTERISTICS, BIOACCUMULATION, AND SOURCES OF MERCURY IN RICE AT NANSI LAKE AREA, SHANDONG PROVINCE, CHNIA. Liu, H.,Zhang, J.,Dai, J. L.,Wang, L. H.,Zhang, J.,Li, G. X.. 2015

[14]Nitrogen Status Diagnosis of Rice by Using a Digital Camera. Fan Ming-sheng,Zhang Fu-suo,Chen Xin-ping,Jia Liang-liang,Sun Yan-ming,Lue Shi-hua. 2009

[15]Influence of unflooded mulching cultivation on nitrogen uptake and utilization of fertilizer nitrogen by rice. Liu, Xuejun,Zhang, Fusuo,Mao, Daru,Zeng, Xingzhong,Lu, Shihua,Wang, Mingtian. 2008

[16]Overexpression of a phytochrome-regulated tandem zinc finger protein gene, OsTZF1, confers hypersensitivity to ABA and hyposensitivity to red light and far-red light in rice seedlings. Zhou, Jinjun,Fan, Zhongxue,Xie, Xianzhi,Zhang, Cheng,Zhou, Jinjun,Fan, Zhongxue,Xie, Xianzhi,Zhang, Cheng,Ma, Huiquan,Zhang, Fang,Chen, Fan. 2012

[17]Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR. Lu, Fen,Wang, Huiqin,Wang, Shanzhi,Jiang, Wendi,Yang, Jun,Sun, Wenxian,Lu, Fen,Wang, Huiqin,Wang, Shanzhi,Jiang, Wendi,Yang, Jun,Sun, Wenxian,Shan, Changlin,Li, Bin,Shan, Changlin,Li, Bin,Yang, Jun,Zhang, Shiyong. 2015

[18]A missense mutation in the transmembrane domain of CESA9 affects cell wall biosynthesis and plant growth in rice. Wang, Daofeng,Lan, Jinhao,Wang, Daofeng,Zhao, Jinfeng,Li, Xueyong,Yuan, Shoujiang,Yin, Liang,Guo, Baotai. 2012

[19]Mutations in the MIT3 gene encoding a caroteniod isomerase lead to increased tiller number in rice. Liu, Lihua,Peng, Peng,Qiu, Haiyang,Zhao, Jinfeng,Fang, Jingjing,Patil, Suyash Bhimgonda,Li, Xueyong,Xie, Tingting,Zhang, Wenhui,Wang, Yiqin,Fang, Shuang,Chu, Jinfang,Yuan, Shoujiang. 2018

[20]Detection of epistatic interactions of three QTLs for heading date in rice using single segment substitution lines. Ding, Han-Feng,Liu, Xu,Li, Run-Fang,Wang, Wen-Ying,Zhang, Y.,Zhang, Xiao-Dong,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song,Ding, Han-Feng.

作者其他论文 更多>>