Transcriptome Analysis Suggests That Chromosome Introgression Fragments from Sea Island Cotton (Gossypium barbadense) Increase Fiber Strength in Upland Cotton (Gossypium hirsutum)

文献类型: 外文期刊

第一作者: Quanwei Lu;;Yuzhen Shi

作者: Quanwei Lu;Yuzhen Shi;Huang, Jinling;Yuan, Youlu;Xianghui Xiao;Pengtao Li;Juwu Gong;Wankui Gong;Aiying Liu;Haihong Shang;Junwen Li;Qun Ge;Weiwu Song;Shaoqi Li;Zhen Zhang;Md Harun or Rashid;Renhai Peng;Youlu Yuan;Jinling Huang

作者机构:

关键词: cotton;fiber strength;transcriptome;DEG;secondary cell wall synthesis;GenPred;Shared Data Resources;Genomic Selection

期刊名称:G3-GENES GENOMES GENETICS ( 影响因子:3.154; 五年影响因子:3.369 )

ISSN: 2160-1836

年卷期: 2017 年 7 卷 10 期

页码:

收录情况: SCI

摘要: As high-strength cotton fibers are critical components of high quality cotton, developing cotton cultivars with high-strength fibers as well as high yield is a top priority for cotton development. Recently, chromosome segment substitution lines (CSSLs) have been developed from high-yield Upland cotton (Gossypium hirsutum) crossed with high-quality Sea Island cotton (G. barbadense). Here, we constructed a CSSL population by crossing CCRI45, a high-yield Upland cotton cultivar, with Hai1, a Sea Island cotton cultivar with superior fiber quality. We then selected two CSSLs with significantly higher fiber strength than CCRI45 (MBI7747 and MBI7561), and one CSSL with lower fiber strength than CCRI45 (MBI7285), for further analysis. We sequenced all four transcriptomes at four different time points postanthesis, and clustered the 44,678 identified genes by function. We identified 2200 common differentially-expressed genes (DEGs): those that were found in both high quality CSSLs (MBI7747 and MBI7561), but not in the low quality CSSL (MBI7285). Many of these genes were associated with various metabolic pathways that affect fiber strength. Upregulated DEGs were associated with polysaccharide metabolic regulation, single-organism localization, cell wall organization, and biogenesis, while the downregulated DEGs were associated with microtubule regulation, the cellular response to stress, and the cell cycle. Further analyses indicated that three genes, XLOC_036333 [mannosyl-oligosaccharide--mannosidase (MNS1)], XLOC_029945 (FLA8), and XLOC_075372 (snakin-1), were potentially important for the regulation of cotton fiber strength. Our results suggest that these genes may be good candidates for future investigation of the molecular mechanisms of fiber strength formation and for the improvement of cotton fiber quality through molecular breeding.

分类号:

  • 相关文献

[1]Incorporating Gene Annotation into Genomic Prediction of Complex Phenotypes. Gao, Ning,Zhang, Zhe,Yuan, Xiaolong,Zhang, Hao,Li, Jiaqi,Gao, Ning,Martini, Johannes W. R.,Simianer, Henner. 2017

[2]Genome-Wide Association Study and QTL Mapping Reveal Genomic Loci Associated with Fusarium Ear Rot Resistance in Tropical Maize Germplasm. Chen, Jiafa,Ding, Junqiang,Wu, Jianyu,Chen, Jiafa,Ding, Junqiang,Wu, Jianyu,Wu, Jianyu,Chen, Jiafa,Shrestha, Rosemary,Zheng, Hongjian,Mu, Chunhua,Mahuku, George,Zheng, Hongjian,Mu, Chunhua,Mahuku, George. 2016

[3]Genome-Wide SNP Discovery and Analysis of Genetic Diversity in Farmed Sika Deer (Cervus nippon) in Northeast China Using Double-Digest Restriction Site-Associated DNA Sequencing. Ba, Hengxing,Jia, Boyin,Wang, Guiwu,Yang, Yifeng,Li, Chunyi,Kedem, Gilead. 2017

[4]Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Varshney, Rajeev K.,Mohan, S. Murali,Gaur, Pooran M.,Pandey, Manish K.,Sawargaonkar, Shrikant L.,Chitikineni, Annapurna,Janila, Pasupuleti,Saxena, K. B.,Sharma, Mamta,Rathore, Abhishek,Mallikarjuna, Nalini,Gowda, C. L. L.,Varshney, Rajeev K.,Varshney, Rajeev K.,Varshney, Rajeev K.,Liang, Xuanqiang,Gangarao, N. V. P. R.,Pandey, Manish K.,Bohra, Abhishek,Pratap, Aditya,Datta, Subhojit,Chaturvedi, S. K.,Nadarajan, N.,Kimurto, Paul K.,Fikre, Asnake,Tripathi, Shailesh,Bharadwaj, Ch.,Anuradha, G.,Babbar, Anita,Choudhary, Arbind K.,Mhase, M. B.,Mannur, D. M.. 2013

[5]Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. Min Lin,Chaoyou Pang,Shuli Fan,Meizhen Song,Hengling Wei,Shuxun Yu. 2015

[6]Characterization of the global transcriptome for cotton (Gossypium hirsutum L.) anther and development of SSR marker. Xianwen Zhang ,Zhenwei Ye,TiankangWang,Hairong Xiong,Xiaoling Yuan,Zhigang Zhang,Youlu Yuan,Zhi Liu.

[7]Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa). Zhang, Wujun,Wu, Longmei,Ding, Yanfeng,Wu, Xiaoran,Weng, Fei,Li, Ganghua,Liu, Zhenghui,Tang, She,Ding, Chengqiang,Wang, Shaohua,Zhang, Wujun,Yao, Xiong.

[8]An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). Ye, Jiang,Yang, Yuhua,Shi, Jiaqin,Zhan, Jiepeng,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong,Chen, Bo,Luo, Meizhong. 2017

[9]De novo transcriptome sequencing of Acer palmatum and comprehensive analysis of differentially expressed genes under salt stress in two contrasting genotypes. Rong, Liping,Li, Qianzhong,Li, Shushun,Tang, Ling,Wen, Jing.

[10]Comprehensive analysis of differentially expressed genes under salt stress in pear (Pyrus betulaefolia) using RNA-Seq. Li, Hui,Lin, Jing,Yang, Qing-Song,Li, Xiao-Gang,Chang, You-Hong.

[11]Effects of fiber wax and cellulose content on colored cotton fiber quality. Zhaoe Pan,Donglei Sun,Junling Sun,Zhongli Zhou,Yinhua Jia,Baoyin Pang,Zhiying Ma,Xiongming Du.

[12]Response of the enzymes to nitrogen applications in cotton fiber (Gossypium hirsutum L.) and their relationships with fiber strength. Wang YouHua,Feng Ying,Xu NaiYin,Chen BingLin,Ma RongHui,Zhou ZhiGuo,Xu NaiYin. 2009

[13]Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema. Ning Zhiyuan,Mei, Hongxian,Zhang, Tianzhen,Chen, Hong. 2014

[14]Accuracy of Whole-Genome Prediction Using a Genetic Architecture-Enhanced Variance-Covariance Matrix. Zhang, Zhe,He, Jinlong,Gao, Ning,Zhang, Hao,Li, Jiaqi,Erbe, Malena,Ober, Ulrike,Simianer, Henner. 2015

[15]Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro.D8 in Upland cotton. Chen, Hong,Qian, Neng,Guo, Wangzhen,Zhang, Tianzhen,Song, Qingping,Li, Baocheng,Deng, Fujun,Dong, Cunguang.

[16]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[17]Comparative study of estimation methods for genomic breeding values. Wang, Chonglong,Qian, Rong,Wang, Chonglong,Zhang, Qin,Jiang, Li,Ding, Xiangdong,Wang, Chonglong,Zhao, Yaofeng. 2016

[18]Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model. Gao, Ning,Li, Jiaqi,He, Jinlong,Xiao, Guang,Luo, Yuanyu,Zhang, Hao,Chen, Zanmou,Zhang, Zhe,Gao, Ning,Zhang, Zhe. 2015

[19]Accuracy of genomic prediction for milk production traits in the Chinese Holstein population using a reference population consisting of cows. Ding, X.,Zhang, Z.,Li, X.,Wang, S.,Wu, X.,Sun, D.,Yu, Y.,Liu, J.,Wang, Y.,Zhang, Y.,Zhang, S.,Zhang, Y.,Zhang, Q.,Zhang, Z.. 2013

[20]Genetic parameters and trends for production and reproduction traits of a Landrace herd in China. Zhang Zhe,Zhang Hao,Pan Rong-yang,Wu Long,Li Ya-lan,Chen Zan-mou,Cai Geng-yuan,Li Jia-qi,Wu Zhen-fang. 2016

作者其他论文 更多>>