Differentially expressed genes in a flock of Chinese local-breed chickens infected with a subgroup J avian leukosis virus using suppression subtractive hybridization

文献类型: 外文期刊

第一作者: Zhao, Guiping

作者: Zhao, Guiping;Zheng, Maiqing;Chen, Jilan;Wen, Jie;Wu, Chunmei;Li, Wenjuan;Liu, Libo;Zhang, Yuan

作者机构:

关键词: Avian leukosis virus subgroup J;chicken;transferring gene;MHC genes;hemoglobin gene

期刊名称:GENETICS AND MOLECULAR BIOLOGY ( 影响因子:1.771; 五年影响因子:2.584 )

ISSN: 1415-4757

年卷期: 2010 年 33 卷 1 期

页码:

收录情况: SCI

摘要: Avian leukosis virus subgroup J (ALV-J) is a new type of virus that mainly induces myeloid leukosis (ML) in chickens. To further elucidate the pathogenesis of ALV-J infection and tumor development, expression profiles from the bone marrow tissue of 15 infected and 18 non-infected birds from a local-breed poultry-farm under naturally infected conditions, were analyzed by suppression-subtractive hybridization. The birds were diagnosed as ML+ (or ML-) by specific ALV-J detection methods, involving serological tests for antigens and antibodies, and RT-PCR to detect viral RNA. A total of 59 partial gene sequences were revealed by differential screening of 496 forward and 384 reverse subtracted cDNA clones. Of these, 22 identified genes, including 8 up-regulated and 14 down-regulated, were related to immune functions, these genes being, MHC B-G antigen, translationally-controlled tumor protein (TPT1/TPTC), transferrin and ferritin, hemoglobin and Carbonic anhydrase. Four of the down-regulated genes were selected for further analysis, in view of their predicted roles in infection and immunity by real-time qRT-PCR, using RNA collected from the same birds as those used for SSH. The four genes were expressed at significantly lower levels (p < 0.001) in ALV-J infected birds than in non-infected ones.

分类号:

  • 相关文献

[1]Recombinant Marek's Disease Virus as a Vector-Based Vaccine against Avian Leukosis Virus Subgroup J in Chicken. Liu, Yongzhen,Li, Kai,Gao, Yulong,Gao, Li,Zhong, Li,Zhang, Yao,Liu, Changjun,Zhang, Yanping,Wang, Xiaomei. 2016

[2]Molecular characteristics of the complete genome of a J-subgroup avian leukosis virus strain isolated from Eurasian teal in China. Zeng, Xiangwei,Hao, Ruijun,Liu, Wansi,Han, Chunyan,Zeng, Xiangwei,Gao, Yulong,Li, Delong,Hao, Ruijun,Liu, Wansi,Han, Chunyan,Gao, Honglei,Qi, Xiaole,Wang, Yongqiang,Wang, Xiaomei,Liu, Lanlan.

[3]Novel sequences of subgroup J avian leukosis viruses associated with hemangioma in Chinese layer hens. Pan, Wei,Gao, Yulong,Sun, Fenfen,Qin, Litin,Liu, Zaisi,Yun, Bingling,Wang, Yongqiang,Qi, Xiaole,Gao, Honglei,Wang, Xiaomei,Wang, Xiaomei. 2011

[4]Deep Sequencing Analysis of miRNA Expression in Breast Muscle of Fast-Growing and Slow-Growing Broilers. Ouyang, Hongjia,He, Xiaomei,Li, Guihuan,Xu, Haiping,Jia, Xinzheng,Nie, Qinghua,Zhang, Xiquan,Ouyang, Hongjia,He, Xiaomei,Li, Guihuan,Xu, Haiping,Jia, Xinzheng,Nie, Qinghua,Zhang, Xiquan,Ouyang, Hongjia,He, Xiaomei,Li, Guihuan,Xu, Haiping,Jia, Xinzheng,Nie, Qinghua,Zhang, Xiquan. 2015

[5]Molecular epidemiology of hydropericardium syndrome outbreak-associated serotype 4 fowl adenovirus isolates in central China. Zhang, Teng,Zhang, Teng,Jin, Qianyue,Ding, Peiyang,Chai, Yongxiao,Li, Yafei,Liu, Xiao,Luo, Jun,Zhang, Gaiping,Chai, Yongxiao,Liu, Xiao,Zhang, Gaiping,Ding, Peiyang,Li, Yafei,Wang, Yinbiao,Jin, Qianyue,Zhang, Gaiping. 2016

[6]A premature stop codon within the tvb receptor gene results in decreased susceptibility to infection by avian leukosis virus subgroups B, D, and E. Chen, WeiGuo,Liu, Yang,Li, Xinjian,Li, Hongxing,Dai, Zhenkai,Yan, Yiming,Zhang, Xinheng,Lin, Wencheng,Ma, Jingyun,Xie, Qingmei,Chen, WeiGuo,Liu, Yang,Li, Xinjian,Li, Hongxing,Dai, Zhenkai,Yan, Yiming,Zhang, Xinheng,Lin, Wencheng,Ma, Jingyun,Xie, Qingmei,Li, Aijun,Shu, Dingming,Zhang, Huanmin,Chen, WeiGuo,Liu, Yang,Li, Xinjian,Li, Hongxing,Dai, Zhenkai,Yan, Yiming,Zhang, Xinheng,Lin, Wencheng,Ma, Jingyun,Xie, Qingmei,Chen, WeiGuo,Lin, Wencheng,Ma, Jingyun,Xie, Qingmei. 2017

[7]Differential expression of L-FABP and L-BABP between fat and lean chickens. Zhang, Q.,Shi, H.,Liu, W.,Wang, Y.,Wang, Q.,Li, H.,Zhang, Q.,Shi, H.,Liu, W.,Wang, Y.,Li, H.,Wang, Q.. 2013

[8]An association between genetic variation in the roundabout, axon guidance receptor, homolog 2 gene and immunity traits in chickens. Shu, D. M.. 2014

[9]Differentially expressed genes in the liver of lean and fat chickens. He, Q.,Wang, S. Z.,Leng, L.,Na, W.,Wang, Q. G.,Li, H.,He, Q.,Wang, S. Z.,Leng, L.,Na, W.,Wang, Q. G.,Li, H.,He, Q.,Wang, S. Z.,Leng, L.,Na, W.,Li, H.,Wang, Q. G.. 2014

[10]A genome-wide association study identifies major loci affecting the immune response against infectious bronchitis virus in chicken. Luo, Chenglong,Qu, Hao,Ma, Jie,Wang, Jie,Shu, Dingming,Hu, Xiaoxiang,Li, Ning,Luo, Chenglong,Qu, Hao,Ma, Jie,Wang, Jie,Shu, Dingming. 2014

[11]Biological Characteristics of Chinese Precocious Strain of Eimeria acervulina and Its Immune Efficacy Against Different Field Strains. Wu, Lin-Lin,Lin, Rui-Qing,Duan, Wen-Fang,Zou, Shang-Shu,Yuan, Zi-Guo,Weng, Ya-Biao,Sun, Ming-Fei,Liu, Li-Dan. 2014

[12]Determination of virginiamycin M1 residue in tissues of swine and chicken by ultra-performance liquid chromatography tandem mass spectrometry. Wang, Xiaoyang,Wang, Mi,Zhang, Keyu,Hou, Ting,Zhang, Lifang,Fei, Chenzong,Xue, Feiqun,Wang, Xiaoyang,Hang, Taijun. 2018

[13]Up-regulation of NLRC5 and NF-kappa B signaling pathway in carrier chickens challenged with Salmonella enterica Serovar Pullorum at different persistence periods. Liu, Xiangping,Sheng, Zhongwei,Dou, Xinhong,Wang, Kehua,Ma, Teng,Wang, Hongzhi,Li, Zhiteng,Pan, Zhiming,Chang, Guobin,Chen, Guohong. 2015

[14]Dissection of Myogenic Differentiation Signatures in Chickens by RNA-Seq Analysis. Li, Tingting,Zhang, Genxi,Wu, Pengfei,Liu, Qiuhong,Wang, Jinyu,Duan, Lian,Li, Guohui. 2018

[15]Combination of multi-element and stable isotope analysis improved the traceability of chicken from four provinces of China. Zhao, Yan,Wang, Donghua,Yang, Shuming,Zhao, Yan,Wang, Donghua,Yang, Shuming,Zhang, Bin,Guo, Bin,Guo, Bin. 2016

[16]Complete mitochondrial genome sequence and gene organization of Chinese indigenous chickens with phylogenetic considerations. Zhao, F. P.,Zhang, B. K.,Zhao, F. P.,Fan, H. Y.,Fan, H. Y.,Li, G. H.. 2016

[17]Detecting Splicing Variants of FOXP2 and its Protein Expression in Chicken Brain. Wang, Xi,Hamid, Mohammod Abdul,Zhao, Xingbo,Wang, Xi,Li, Hongxia. 2012

[18]Effect of an exon 1 mutation in the myostatin gene on the growth traits of the Bian chicken. Zhang, G. X.,Zhao, X. H.,Wang, J. Y.,Ding, F. X.,Zhang, L.. 2012

[19]Genome-wide association study of antibody response to Newcastle disease virus in chicken. Luo, Chenglong,Qu, Hao,Ma, Jie,Wang, Jie,Li, Chunyu,Yang, Chunfen,Shu, Dingming,Hu, Xiaoxiang,Li, Ning,Luo, Chenglong,Qu, Hao,Ma, Jie,Wang, Jie,Li, Chunyu,Yang, Chunfen,Hu, Xiaoxiang,Shu, Dingming. 2013

[20]Identification of genome-wide SNP-SNP interactions associated with important traits in chicken. Zhang, Hui,Yu, Jia-Qiang,Yang, Li-Li,Zhang, Xin-Yang,Na, Wei,Li, Hui,Zhang, Hui,Yu, Jia-Qiang,Yang, Li-Li,Zhang, Xin-Yang,Na, Wei,Li, Hui,Zhang, Hui,Yu, Jia-Qiang,Yang, Li-Li,Zhang, Xin-Yang,Na, Wei,Li, Hui,Kramer, Luke M.,Reecy, James M.. 2017

作者其他论文 更多>>