Interaction study of MADS-domain proteins in tomato

文献类型: 外文期刊

第一作者: Leseberg, Charles H.

作者: Leseberg, Charles H.;Eissler, Christie L.;Johns, Mitrick A.;Duvall, Melvin R.;Mao, Long;Leseberg, Charles H.;Wang, Xiang;Mao, Long;Leseberg, Charles H.;Wang, Xiang;Mao, Long

作者机构:

关键词: flower development;higher order complexes;MADS-domain proteins;protein-protein interaction;tomato;yeast two-hybrid

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN: 0022-0957

年卷期: 2008 年 59 卷 8 期

页码:

收录情况: SCI

摘要: MADS-domain proteins are important transcription factors involved in many biological processes of plants. Interactions between MADS-domain proteins are essential for their functions. In tomato (Solanum lycopersicum), the number of MIKCc-type MADS-domain proteins identified has totalled 36, but a large-scale interaction assay is lacking. In this study, 22 tomato MADS-domain proteins were selected from six functionally important subfamilies of the MADS-box gene family, to create the first large-scale tomato protein interaction network. Compared with Arabidopsis and petunia (Petunia hybrida), protein interaction patterns in tomato displayed both conservation and divergence. The majority of proteins that can be identified as putative orthologues exhibited conserved interaction patterns, and modifications were mostly found in genes underlining traits unique to tomato. JOINTLESS and RIN, characterized for their roles in abscission zone development and fruit ripening, respectively, showed enlarged interaction networks in comparison with their Arabidopsis and petunia counterparts. Novel interactions were also found for members of the expanded subfamilies, such as those represented by AP1/FUL and AP3/PI MADS-domain proteins. In search for higher order complexes, TM5 was found to be the preferred bridge among the five SEP-like proteins. Additionally, 16 proteins with the MADS-domain removed were used to assess the role of the MADS-domain in protein-protein interactions. The current work provides important knowledge for further functional and evolutionary study of the MADS-box genes in tomato.

分类号:

  • 相关文献

[1]Decreased sorbitol synthesis leads to abnormal stamen development and reduced pollen tube growth via an MYB transcription factor, MdMYB39L, in apple (Malus domestica). Meng, Dong,He, Mingyang,Xu, Hongxia,Cheng, Lailiang,He, Mingyang,Bai, Yang,Fei, Zhangjun,Xu, Hongxia,Dandekar, Abhaya M.. 2018

[2]Molecular cloning, identification, and chromosomal localization of two MADS box genes in peach (Prunus persica). Zhang, Lin,Ma, Rongcai,Zhang, Lin,Xu, Yong,Ma, Rongcai. 2008

[3]Cloning and Expression Analysis of a PISTILLATA Homologous Gene from Pineapple (Ananas comosus L. Merr). Lv, Ling-Ling,Xie, Jiang-Hui,Liu, Yu-Ge,Wei, Chang-Bin,Liu, Sheng-Hui,Sun, Guang-Ming,Duan, Jun,Zhang, Jian-Xia. 2012

[4]Selection of housekeeping genes for gene expression studies on the development of fruit bearing shoots in Chinese jujube (Ziziphus jujube Mill.). Sun, Hai-feng,Meng, Yu-ping,Cui, Gui-mei,Cao, Qiu-fen,Sun, Hai-feng,Liang, Ai-hua,Sun, Hai-feng,Li, Jie.

[5]DEFORMED FLORAL ORGAN1 (DFO1) regulates floral organ identity by epigenetically repressing the expression of OsMADS58 in rice (Oryza sativa). Zheng, Ming,Wang, Yihua,Wang, Yunlong,Wang, Chunming,Lv, Jia,Peng, Cheng,Wu, Tao,Liu, Kai,Zhao, Shaolu,Liu, Xi,Jiang, Ling,Wan, Jianmin,Ren, Yulong,Guo, Xiuping,Wan, Jianmin,Terzaghi, William.

[6]Pistil abortion in Japanese apricot (Prunus mume Sieb. et Zucc.): isolation and functional analysis of PmCCoAOMT gene. Sun, Hailong,Shi, Ting,Song, Juan,Xu, Yanshuai,Gao, Zhihong,Song, Xinxin,Ni, Zhaojun,Cai, Binhua,Sun, Hailong.

[7]STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Luo, Hongfa,He, Guanghua,Xiao, Han,Tang, Jinfu,Wang, Wenming,Li, Xiaobing,Zhao, Xianfeng,Zhu, Lihuang,Xiao, Han,Tang, Jinfu,Wang, Wenming,Li, Xiaobing,Zhao, Xianfeng,Zhu, Lihuang,Tang, Jinfu,Wang, Wenming,Jin, Liang,Xie, Rong,Meng, Zheng.

[8]Isolation and characterization of a FLOWERING LOCUS T homolog from pineapple (Ananas comosus (L.) Merr). Duan, Jun,Lv, LingLing,Xie, JiangHui,Wei, ChangBin,Liu, Yuge,Liu, ShengHui,Sun, GuangMing.

[9]Molecular Cloning and Transcriptional Analysis of the Putative AGAMOUS Homolog AcAG in Onion (Allium cepa). Li, Hong-You,Wang, Chan,Zhang, Li-Ying,Zhao, Hong,Wang, Yong-Qin,Li, Hong-You,Zhao, Rui,Wang, Chan.

[10]Volatile Organic Compound Emissions from Different Stages of Cananga odorata Flower Development. Qin, Xiao-Wei,Hao, Chao-Yun,He, Shu-Zhen,Wu, Gang,Tan, Le-He,Xu, Fei,Hu, Rong-Suo,Qin, Xiao-Wei,Hao, Chao-Yun,Tan, Le-He,He, Shu-Zhen,Tan, Le-He,Xu, Fei,Hu, Rong-Suo.

[11]Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton (Gossypium hirsutum L.). Xiaohong Zhang,Jianghui wei,Shuli Fan,Meizhen Song,Chaoyou Pang,Hengling Wei,Chengshe Wang,Shuxun Yu. 2016

[12]Molecular identification and interaction assay of the gene (OsUbc13) encoding a ubiquitin-conjugating enzyme in rice. Wang, Ya,Xu, Meng-yun,Liu, Jian-ping,Wang, Mu-gui,Tu, Ju-min,Wang, Ya,Yin, Hai-qing. 2014

[13]Interactive cellular proteins related to classical swine fever virus non-structure protein 2 by yeast two-hybrid analysis. Kang, Kai,Guo, Kangkang,Zhang, Yanming,Wu, Jiang,Li, Weiwei,Lin, Zhi,Tang, Qinhai.

[14]Identification and function analysis of the host cell protein that interacted with Orf virus Bcl-2-like protein ORFV125. Tian, Hong,Chen, Yan,Wu, Jinyan,Lin, Tong,Liu, Xiangtao.

[15]Isolation and analysis of ZmPto from maize, a homologue to Pto. Zou, Huawen,Song, Zhongjian,Wu, Zhongyi,Zhang, Xiuhai,Huang, Conglin,Zou, Huawen,Liu, Hongfang,Ma, Guohui. 2011

[16]Screen of Receptor-like Kinase OsWAK50 Intracellular Interacting Proteins by Yeast Two-hybrid System. Sun Li-Jing,Sun Ying,Zhang Qian,Lu Tie-Gang. 2012

[17]Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants. Lin, Lin,Yan, Fei,Lu, Yuwen,Zheng, Hongying,Chen, Jianping,Luo, Zhaopeng. 2011

[18]Identification of JAZ1-MYC2 Complex in Lotus corniculatus. Zhou, Meiliang,Sun, Zhanmin,Li, Jinbo,Wang, Dan,Tang, Yixiong,Wu, Yanmin,Zhou, Meiliang,Wu, Yanmin.

[19]The interaction of banana MADS-box protein MuMADS1 and ubiquitin-activating enzyme E-MuUBA in post-harvest banana fruit. Liu, Ju-Hua,Zhang, Jing,Jia, Cai-Hong,Zhang, Jian-Bin,Yang, Zi-Xian,Xu, Bi-Yu,Jin, Zhi-Qiang,Wang, Jia-Shui,Jin, Zhi-Qiang. 2013

[20]Identification for soybean host factors interacting with P3N-PIPO protein of Soybean mosaic virus. Song, Puwen,Gao, Le,Zhi, Haijian,Chen, Xin,Wu, Bingyue,Cui, Xiaoyan.

作者其他论文 更多>>