Long-Term Overgrazing-Induced Memory Decreases Photosynthesis of Clonal Offspring in a Perennial Grassland Plant

文献类型: 外文期刊

第一作者: Ren, Weibo

作者: Ren, Weibo;Hu, Ningning;Hou, Xiangyang;Zhang, Jize;Kong, Lingqi;Wu, Zinian;Wang, Hui;Li, Xiliang;Guo, Huiqin;Liu, Zhiying

作者机构:

关键词: phenotypic plasticity;transgenerational effect;photosynthesis;grassland;livestock grazing

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Previous studies of transgenerational plasticity have demonstrated that long-term overgrazing experienced by Leymus chinensis, an ecologically dominant, rhizomatous grass species in eastern Eurasian temperate grassland, significantly affects its clonal growth in subsequent generations. However, there is a dearth of information on the reasons underlying this overgrazing-induced memory effect in plant morphological plasticity. We characterized the relationship between a dwarf phenotype and photosynthesis function decline of L. chinensis from the perspective of leaf photosynthesis by using both field measurement and rhizome buds culture cultivated in a greenhouse. Leaf photosynthetic functions (net photosynthetic rate, stomatal conductance, intercellular carbon dioxide concentration, and transpiration rate) were significantly decreased in smaller L. chinensis individuals that were induced to have a dwarf phenotype by being heavily grazed in the field. This decreased photosynthetic function was maintained a generation after greenhouse tests in which grazing was excluded. Both the response of L. chinensis morphological traits and photosynthetic functions in greenhouse were deceased relative to those in the field experiment. Further, there were significant decreases in leaf chlorophyll content and Rubisco enzyme activities of leaves between bud-cultured dwarf and non-dwarf L. chinensis in the greenhouse. Moreover, gene expression patterns showed that the bud-cultured dwarf L. chinensis significantly down-regulated ( by 1.86- to 5.33- fold) a series of key genes that regulate photosynthetic efficiency, stomata opening, and chloroplast development compared with the non-dwarf L. chinensis. This is among the first studies revealing a linkage between long-term overgrazing affecting the transgenerational morphological plasticity of clonal plants and physiologically adaptive photosynthesis function. Overall, clonal transgenerational effects in L. chinensis phenotypic traits heavily involve photosynthetic plasticity.

分类号:

  • 相关文献

[1]Long-Term Overgrazing-Induced Changes in Topsoil Water-Retaining Capacity in a Typical Steppe. Li, Xiliang,Hou, Xiangyang,Guo, Fenghui,Ding, Yong,Duan, Junjie,Liu, Zhiying.

[2]Differential responses of different phenotypes of Microcystis (Cyanophyceae) to UV-B radiation. Qin, Hongjie,Li, Shuangshuang,Li, Dunhai,Qin, Hongjie,Li, Shuangshuang.

[3]Molecular Ecological Basis of Grasshopper (Oedaleus asiaticus) Phenotypic Plasticity under Environmental Selection. Hao, Kun,Ma, Jingchuan,Huang, Xunbing,Tu, Xiongbing,Cao, Guangchun,Wang, Guangjun,Nong, Xiangqun,Zhang, Zehua,Qin, Xinghu,Qin, Xinghu,Ma, Jingchuan,Huang, Xunbing,Tu, Xiongbing,Cao, Guangchun,Wang, Guangjun,Nong, Xiangqun,Zhang, Zehua,Ali, Md. Panna,Pittendrigh, Barry R.,Whitman, Douglas W.. 2017

[4]A dynamic framework for quantifying the genetic architecture of phenotypic plasticity. Wang, Zhong,Lv, Yafei,Xu, Fang,Zhou, Tao,Li, Xin,Feng, Sisi,Wu, Rongling,Pang, Xiaoming,Li, Jiahan,Li, Zhikang,Wu, Rongling.

[5]Invasive Eupatorium catarium and Ageratum conyzoides benefit more than does a common native plant from nutrient addition in both competitive and non-competitive environments. Huang, Qiao Q.,Shen, Yi D.,Li, Xiao X.,Li, Shao L.,Fan, Zhi W..

[6]Performance of the invasive Eupatorium catarium and Ageratum conyzoides in comparison with a common native plant under varying levels of light and moisture. Huang, Qiaoqiao,Shen, Yide,Li, Xiaoxia,Fan, Zhiwei,Li, Shaoliang,Liu, Yan.

[7]Trade-offs and evolution of thermal adaptation in the Irish potato famine pathogen Phytophthora infestans. Yang, Li-Na,Zhu, Wen,Wu, E-Jiao,Yang, Ce,Shang, Li-Ping,Thrall, Peter H.,Burdon, Jeremy J.,Jin, Li-Ping,Zhan, Jiasui.

[8]High morphological and physiological plasticity of wheat roots is conducive to higher competitive ability of wheat than maize in intercropping systems. Liu, Yi-Xiang,Zhang, Wei-Ping,Li, Xiao-Fei,Christie, Peter,Li, Long,Sun, Jian-Hao.

[9]Stochastic processes play more important roles in driving the dynamics of rarer species. Zhang, Ximei,Han, Xingguo,Zhang, Ximei,Pu, Zhichao,Li, Yuanheng,Han, Xingguo. 2016

[10]Temporal variations in PM(10) and particle size distribution during Asian dust storms in Inner Mongolia. Hoffmann, Carsten,Funk, Roger,Sommer, Michael,Li, Yong. 2008

[11]Integration of remote sensing and GIS technology to evaluate grassland ecosystem health in north China. Qin, ZH,Xu, B,Xin, XP,Zhou, QB,Zhang, HO,Li, J. 2004

[12]Differential Responses of Soil Microbial Community to Four-Decade Long Grazing and Cultivation in a Semi-Arid Grassland. He, Yating,Qi, Yuchun,Dong, Yunshe,Liu, Xinchao,Sun, Liangjie,He, Yating,Xu, Minggang,He, Xinhua,Li, Jianwei,He, Yating. 2017

[13]Based on the AMSR-E Grassland Snow Depth Monitoring of the Northern China. Yang, Xiuchun,Xu, Bin,Li, Jinya,Cao, Yungang. 2011

[14]Drivers of soil net nitrogen mineralization in the temperate grasslands in Inner Mongolia, China. Liu, Xing-Ren,Li, Sheng-Gong,Liu, Xing-Ren,Li, Sheng-Gong,Ren, Jian-Qiang,Ren, Jian-Qiang.

[15]Analysis of land use change and its driving force in the Longitudinal Range-Gorge Region. Ll ZhengHai,Song GuoBao,Bao YaJing,Song GuoBao,Lo HaiYan,Ll ZhengHai,Wang HaiMei,Xu Tian,Cheng Yan.

[16]Responses of plant community coverage to simulated warming and nitrogen addition in a desert steppe in Northern China. Wang, Zhen,Zhao, Mengli,Han, Guodong,Wang, Zhen,Li, Yuanheng,Hao, Xiying.

[17]Using Cs-137 to estimate wind erosion and dust deposition on grassland in Inner Mongolia-selection of a reference site and description of the temporal variability. Funk, Roger,Hoffmann, Carsten,Reiche, Matthias,Zhang, Zhuodong,Sommer, Michael,Li, Yong,Zhang, Zhuodong,Li, Junjie,Sommer, Michael.

[18]Identifying sensitive areas to wind erosion in the Xilingele grassland by computational fluid dynamics modelling. Zhang, Zhuodong,Reiche, Matthias,Funk, Roger,Hoffmann, Carsten,Sommer, Michael,Wieland, Ralf,Li, Yong,Sommer, Michael.

[19]Biological and ecological evidences suggest Stipa krylovii (Pooideae), contributes to optimal growth performance and population distribution of the grasshopper Oedaleus asiaticus. Ma, J. C.,Qin, X. H.,Tu, X. B.,Cao, G. C.,Wang, G. J.,Nong, X. Q.,Zhang, Z. H.,Huang, X. B.,Ma, J. C.,Qin, X. H.,Tu, X. B.,Cao, G. C.,Wang, G. J.,Nong, X. Q.,Zhang, Z. H.,McNeill, M. R..

[20]Quantitative Analysis of Plant Consumption and Preference by Oedaleus asiaticus (Acrididae: Oedipodinae) in Changed Plant Communities Consisting of Three Grass Species. Zhang, Z.,McNeill, M..

作者其他论文 更多>>