Stability analysis of seven agronomic traits for soybean [(Glycine max (L.) Merr.] Tokachi nagaha and its derived cultivars using the AMMI model

文献类型: 外文期刊

第一作者: Liu, Zhangxiong

作者: Liu, Zhangxiong;Qiu, Lijuan;Fan, Xuhong;Zheng, Yuhong;Wang, Shuming;Huang, Wen;Yang, Jiyu

作者机构:

关键词: Soybean;stability analysis;AMMI model;D

期刊名称:PLANT PRODUCTION SCIENCE ( 影响因子:2.222; 五年影响因子:2.175 )

ISSN: 1343-943X

年卷期: 2017 年 20 卷 4 期

页码:

收录情况: SCI

摘要: The stabilities of seven agronomic traits were analyzed and the general stabilities of soybean [Glycine max (L.) Merr.] accessions were evaluated based on the additive main effects and multiplicative interactions (AMMI) model using the founder parent Tokachi nagaha and 137 of its derived cultivars as materials. The objective was to provide a theoretical basis for effectively using germplasm in soybean breeding and production. Analysis of variance (ANOVA) showed that genotype, environment, and genotype by environment interactions were significantly different for each trait. The first three interaction principal components axes (IPCA) were highly significant, accounting for 61.28-70.00% of the total variation. The stability differed for the different traits. 50 cultivars with high general stabilities were identified. The general stability of Tokachi nagaha was moderate, as the stability coefficients (D i) of its seven traits were relatively high; this must be considered by breeders using this cultivar as a breeding parent. There were significant positive correlations between the phenotypic values and their own D i values for number of branches per plant, number of pods per plant, number of seeds per plant, and seed weight per plant. This would lead to the expectation that the phenotypic stability would be lower when a cultivar had more branches, pods, seeds, and high per plant yields. Thus, it appears difficult to breed cultivars that simultaneously have high yields and high stability.

分类号:

  • 相关文献

[1]Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments. Liu, Xiaolu,Wan, Jianmin,Liu, Xiaolu,Wan, Jianmin,Wan, Xiangyuan,Ma, Xiaodong,Wan, Jianmin,Wan, Xiangyuan.

[2]Syntheses and characterizations of zinc(II) and copper(II) complexes with reduced Schiff base derived from salicylaldehyde and D,L-selenomethionine. Wang, Ling-Yun,Ran, Xue-Guang,Cao, De-Rong,Ran, Xue-Guang,Hao, Jie.

[3]Floral reversion mechanism in longan (Dimocarpus longan Lour.) revealed by proteomic and anatomic analyses. Wang, Ling,Liang, Wenyu,Gai, Yonghong,Wang, Xiaoyan,Chen, Wei,You, Xiangrong,Chen, Wei,You, Xiangrong,Liang, Wenyu.

[4]Genetic diversity and aggressiveness of Fusarium species isolated from soybean in Alberta, Canada. Zhou, Qixing,Chang, Kan-Fa,Hwang, Sheau-Fang,Fu, Heting,Turnbull, George D.,Li, Nana,Strelkov, Stephen E.,Conner, Robert L.,McLaren, Debra L.,Harding, Michael W.. 2018

[5]High-Density Genetic Mapping Identifies New Major Loci for Tolerance to Low-Phosphorus Stress in Soybean. Zhang, Dan,Li, Hongyan,Chu, Shanshan,Lv, Haiyan,Wang, Jinshe,Zhang, Hengyou,Hu, Zhenbin,Yu, Deyue. 2016

[6]Geographical distribution of GmTfl1 alleles in Chinese soybean varieties. Liu, Guifeng,Zhao, Lin,Qiu, Lijuan,Liu, Ying,Chang, Ruzhen,Guan, Rongxia,Qiu, Lijuan,Averitt, Benjamin J.,Zhang, Bo,Ma, Yansong,Luan, Xiaoyan. 2015

[7]Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. Li, Pan-Song,Chai, Shou-Cheng,Li, Pan-Song,Yu, Tai-Fei,He, Guan-Hua,Chen, Ming,Zhou, Yong-Bin,Xu, Zhao-Shi,Ma, You-Zhi. 2014

[8]Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. Song, Zhang-yue,Tian, Jing-luan,Fu, Wei-zhe,Li, Lin,Lu, Ling-hong,Zhou, Lian,Shou, Hui-xia,Shan, Zhi-hui,Tang, Gui-xiang. 2013

[9]A CIB1-LIKE transcription factor GmCIL10 from soybean positively regulates plant flowering. Yang DeGuang,Zhao Wang,Meng YingYing,Li HongYu,Liu Bin. 2015

[10]Stability of growth periods traits for soybean cultivars across multiple locations. Liu Zhang-xiong,Chang Ru-zhen,Qiu Li-juan,Wang Xiao-bo,Yang Chun-yan,Xu Ran,Zhang Li-feng,Lu Wei-guo,Wang Qian,Wei Su-hong,Yang Chun-ming,Wang Hui-cai,Wang Rui-zhen,Zhou Rong,Chen Huai-zhu. 2016

[11]Purification and characterization of beta-glucosidase from newly isolated Aspergillus sp MT-0204. Qi, Bin,Liu, Xianjin,Qi, Bin,Wang, Limei. 2009

[12]The Soybean Basic Helix-Loop-Helix Transcription Factor ORG3-Like Enhances Cadmium Tolerance via Increased Iron and Reduced Cadmium Uptake and Transport from Roots to Shoots. Xu, Zhaolong,Liu, Xiaoqing,He, Xiaolan,Xu, Ling,Huang, Yihong,Shao, Hongbo,Zhang, Dayong,Shao, Hongbo,Tang, Boping,Ma, Hongxiang. 2017

[13]Aspects of soybean insect resistance breeding in China. Wang, S. 2004

[14]QTL Mapping of Isoflavone, Oil and Protein Contents in Soybean (Glycine max L. Merr.). Liang Hui-zhen,Yu Yong-liang,Wang Shu-feng,Lian Yun,Wang Ting-feng,Wei Yan-li,Gong Peng-tao,Fang Xuan-jun,Liu Xue-yi,Zhang Meng-chen. 2010

[15]RNAi-mediated SMV P3 cistron silencing confers significantly enhanced resistance to multiple Potyvirus strains and isolates in transgenic soybean. Yang, Xiangdong,Niu, Lu,Zhang, Wei,Yang, Jing,Xing, Guojie,He, Hongli,Guo, Dongquan,Du, Qian,Qian, Xueyan,Yao, Yao,Li, Qiyun,Dong, Yingshan. 2018

[16]Genome-wide identification and expression analysis of the CPP-like gene family in soybean. Zhang, L.,Wang, Y. M.,Yuan, C. P.,Zhang, Y. Y.,Li, H. Y.,Dong, Y. S.,Zhao, H. K.,Yan, X. F.,Li, Q. Y.. 2015

[17]Optimal Concentration of Zinc Sulfate in Foliar Spray to Alleviate Salinity Stress in Glycine soja. Jiang, W.,Xu, H. L.,Lu, H. F.,Jiang, W.,Sun, X. H.,Mantri, N.. 2014

[18]Allelism and molecular mapping of soybean necrotic root mutants. Palmer, Reid G.,Zhang, Lei,Huang, Zhiping. 2008

[19]Detection of Hirsutella spp. and Pasteuria sp parasitizing second-stage juveniles of Heterodera glycines in soybean fields in China. Ma, R,Liu, XZ,Jian, H,Li, SD. 2005

[20]Fine mapping and identification of the soybean R-SC4 resistance candidate gene to soybean mosaic virus. Wang, Dagang,Ma, Ying,Liu, Ning,Yang, Zhonglu,Zheng, Guijie,Zhi, Haijian,Wang, Dagang. 2011

作者其他论文 更多>>