SpALF4: A newly identified anti-lipopolysaccharide factor from the mud crab Scylla paramamosain with broad spectrum antimicrobial activity

文献类型: 外文期刊

第一作者: Zhu, Lei

作者: Zhu, Lei;Huang, Yan-Qing;Zhou, Jun-Fang;Fang, Wen-Hong;Yao, Xiao-Juan;Wang, Hao;Li, Xin-Cang;Zhu, Lei;Huang, Yan-Qing;Zhou, Jun-Fang;Fang, Wen-Hong;Yao, Xiao-Juan;Wang, Hao;Li, Xin-Cang;Lan, Jiang-Feng;Zhang, Chao

作者机构:

关键词: SpALF4;Expression pattern;Binding activity;Antimicrobial activity

期刊名称:FISH & SHELLFISH IMMUNOLOGY ( 影响因子:4.581; 五年影响因子:4.851 )

ISSN: 1050-4648

年卷期: 2014 年 36 卷 1 期

页码:

收录情况: SCI

摘要: Anti-lipopolysaccharide factors (ALFs) are antimicrobial peptides with binding and neutralizing activities to lipopolysaccharide (LPS) in crustaceans. This study identified and characterized a novel ALF homolog (SpALF4) from the mud crab Scylla paramamosain. The complete cDNA of SpALF4 had 756 bp with a 381 bp open reading frame encoding a protein with 126 aa. The deduced protein contained a signal peptide and a LPS-binding domain. SpALF4 shared the highest identity with PtALF5 at amino acid level but exhibited low similarity with most of other crustacean ALFs. Furthermore, different from the previously identified three SpALF homologs and most of other ALFs, SpALF4 had a low isoelectric point (pI) for the mature peptide and the LPS-binding domain with the values of 6.93 and 6.74, respectively. These results indicate that SpALF4 may be a unique ALF homolog with special biological function in the mud crab. Similar to the spatial structure of ALFPm3, SpALF4 contains three alpha-helices packed against a four-strand beta-sheet, and an amphipathic loop formed by a disulphide bond between two conserved cysteine residues in LPS-binding domain. SpALF4, mainly distributed in hemocytes, could be upregulated by Vibrio harveyi, Staphylococcus aureus, or white spot syndrome virus. Recombinant SpALF4 could inhibit the growth of Gram-negative bacteria (V harveyi, Vibrio anguillarum, Vibrio alginolyticus, Aeromonas hydrophila, Pseudomonas putida), Gram-positive bacteria (S. aureus and Bacillus megaterium), and a fungus Candida albicans to varying degrees. Further study showed that it could also bind to all the aforementioned microorganisms excepts. aureus. These results demonstrate that SpALF4 is a unique ALF homolog with potent antimicrobial activity against bacteria and fungi. This characteristic suggests SpALF4 plays an essential function in immune defense against pathogen invasion in mud crab. (C) 2013 Elsevier Ltd. All rights reserved.

分类号:

  • 相关文献

[1]Newly identified invertebrate-type lysozyme (Splys-i) in mud crab (Scylla paramamosain) exhibiting muramidase-deficient antimicrobial activity. Zhou, Jian,Zhao, Shu,Fang, Wen-Hong,Zhou, Jun-Fang,Zhang, Jing-Xiao,Li, Xin-Cang,Zhou, Jian,Zhao, Shu,Fang, Wen-Hong,Zhou, Jun-Fang,Zhang, Jing-Xiao,Li, Xin-Cang,Zhou, Jian,Ma, Hongyu,Lan, Jiang-Feng. 2017

[2]Test of hirudin activity by tracking the binding of hirudin to thrombin in the presence of BS3 cross-linking. Liu, Yanfang,Wang, Jiangmin,Huang, Qingmei,Yang, Xiaohong,Zhang, Jianhua,Yang, Jian. 2015

[3]Immunolocation and enzyme activity analysis of Cryptosporidium parvum enolase. Mi, Rongsheng,Chen, Zhaoguo,Mi, Rongsheng,Yang, Xiaojiao,Huang, Yan,Cheng, Long,Lu, Ke,Han, Xiangan,Chen, Zhaoguo,Mi, Rongsheng,Yang, Xiaojiao,Huang, Yan,Cheng, Long,Lu, Ke,Han, Xiangan,Chen, Zhaoguo. 2017

[4]CkDREB gene in Caragana korshinskii is involved in the regulation of stress response to multiple abiotic stresses as an AP2/EREBP transcription factor. Wang, Xuemin,Chen, Xiaofang,Gao, Hongwen,Wang, Zan,Sun, Guizhi,Liu, Yun.

[5]Chiral beta-arylalkyl-1H-1,2,4-triazoles as demethylase inhibitors: Biological evaluation and its stereoselective interaction with sterol 14 alpha-demethylase from Penicillium digitatum. Cao, Xiufang,Chen, Changshui,Ke, Shaoyong.

[6]A novel myeloid differentiation factor 88 homolog, SpMyD88, exhibiting SpToll-binding activity in the mud crab Scylla paramamosain. Li, Xin-Cang,Zhu, Lei,Li, Lin-Gui,Huang, Yan-Qing,Lu, Jian-Xue,Fang, Wen-Hong,Kang, Wei,Ren, Qian,Ren, Qian.

[7]Molecular analysis and recombinant expression of bovine neutrophil beta-defensin 12 and its antimicrobial activity. Wu, Jianming,Wang, Changfa,He, Hongbin,Yang, Hongjun,Gao, Yundong,Zhong, Jifeng,Hu, Guixue. 2011

[8]Staurosporine from the endophytic Streptomyces sp strain CNS-42 acts as a potential biocontrol agent and growth elicitor in cucumber. Xiao, Lie,Zhang, Bo,Zhang, Xiaoping,Li, Xiaolin,Zheng, Linyong,Gan, Bingcheng,Huang, Pei,Wang, Qian,Liu, Miaomiao,Bolla, Krishna,Liu, Xueting,Zhang, Lixin,Huang, Pei,Wang, Qian,Liu, Xueting. 2014

[9]Structure-function analysis of Avian beta-defensin-6 and beta-defensin-12: role of charge and disulfide bridges. Yang, Ming,Zhang, Chunye,Zhang, Shuping,Zhang, Xuehan,Zhang, Michael Z.,Rottinghaus, George E.,Zhang, Michael Z.,Rottinghaus, George E.,Zhang, Shuping. 2016

[10]The pqqC gene is essential for antifungal activity of Pseudomonas kilonensis JX22 against Fusarium oxysporum f. sp lycopersici. Xu, Jianhong,Xu, Jianhong,Deng, Peng,Baird, Sonya M.,Lu, Shi-En,Showmaker, Kurt C.,Wang, Hui. 2014

[11]In vitro Antimicrobial Activities and Mechanism of 1-Octen-3-ol against Food-related Bacteria and Pathogenic Fungi. Li, Qiang,Chen, Zuqin,Xiong, Chuan,Li, Qiang,Huang, Wenli,Li, Shuhong,Chen, Cheng. 2017

[12]A new fungicide produced by a Streptomyces sp GAAS7310. Chen, GY,Lin, BR,Lin, YC,Xie, FC,Lu, W,Fong, WF. 2005

[13]New Azalomycin F Analogs from Mangrove Streptomyces sp 211726 with Activity against Microbes and Cancer Cells. Yuan, Ganjun,Yuan, Ganjun,Hong, Kui,Lin, Haipeng,Yuan, Ganjun,Hong, Kui,She, Zhigang,Li, Jia. 2013

[14]Comparison of Compositions and Antimicrobial Activities of Essential Oils from Chemically Stimulated Agarwood, Wild Agarwood and Healthy Aquilaria sinensis (Lour.) Gilg Trees. Chen, Huaiqiong,Yang, Yun,Xue, Jian,Wei, Jianhe,Zhang, Zheng,Chen, Hongjiang,Chen, Huaiqiong,Yang, Yun,Xue, Jian,Wei, Jianhe,Zhang, Zheng,Chen, Hongjiang,Yang, Yun,Chen, Hongjiang,Yang, Yun,Chen, Hongjiang.

[15]A defensin from clam Venerupis philippinarum: Molecular characterization, localization, antibacterial activity, and mechanism of action. Zhang, Linbao,Yang, Dinglong,Wang, Qing,Wu, Huifeng,Pei, Dong,Cong, Ming,Li, Fei,Ji, Chenglong,Zhao, Jianmin,Zhang, Linbao,Yang, Dinglong,Wang, Qing,Wu, Huifeng,Pei, Dong,Cong, Ming,Li, Fei,Ji, Chenglong,Zhao, Jianmin,Zhang, Linbao,Yang, Dinglong,Yuan, Zeyi.

[16]Complement factor I from flatfish half-smooth tongue (Cynoglossus semilaevis) exhibited anti-microbial activities. Xiang, Jinsong,Li, Xihong,Chen, Yadong,Lu, Yang,Yu, Mengjun,Chen, Xuejie,Zhang, Wenting,Zeng, Yan,Sun, Luming,Chen, Song Lin,Sha, Zhenxia,Xiang, Jinsong,Chen, Xuejie,Xiang, Jinsong,Chen, Yadong,Lu, Yang,Yu, Mengjun,Chen, Xuejie,Sha, Zhenxia,Li, Xihong,Chen, Song Lin,Yu, Mengjun,Zhang, Wenting,Zeng, Yan,Sun, Luming.

[17]Purification and characterization of a novel antimicrobial peptide from Brevibacillus laterosporus strain A60. Guo, Lihua,Zeng, Hongmei,Yang, Xiufen,Yuan, Jingjing,Shi, Huaixing,Xiong, Yehui,Chen, Mingjia,Han, Lei,Qiu, Dewen.

[18]Antibacterial Activity and Action Mechanism of the Echinops ritro L. Essential Oil Against Foodborne Pathogenic Bacteria. Jiang, Bin,Wang, Fei,Liu, Lei,Tian, Shangyi,Li, Wenliang,Huang, Yanxin,Yi, Jingwen,Li, Yuxin,Li, Wenliang,Wu, Yin,Yu, Chunlei,Sun, Luguo,Yang, Xiaoguang,Zhang, Yuwei.

[19]Contribution of bovine lactoferrin inter-lobe region to iron binding stability and antimicrobial activity against Staphylococcus aureus. Bai, Xuejing,Teng, Da,Tian, Zigang,Zhu, Yanping,Yang, Yalin,Wang, Jianhua,Bai, Xuejing,Teng, Da,Tian, Zigang,Zhu, Yanping,Yang, Yalin,Wang, Jianhua.

[20]Two novel antimicrobial peptides purified from the symbiotic bacteria Xenorhabdus budapestensis NMC-10. Xiao, Yao,Meng, Fanlu,Qiu, Dewen,Yang, Xiufen.

作者其他论文 更多>>