Pleiotropic effects of Ebony on pigmentation and development in the Asian multi-coloured ladybird beetle, Harmonia axyridis (Coleoptera: Coccinellidae)

文献类型: 外文期刊

第一作者: Lin, Jing

作者: Lin, Jing;Wu, Mengmeng;Chen, Xu;Zang, Liansheng;Lin, Jing;Wu, Mengmeng;Chen, Xu;Zang, Liansheng;Lin, Jing;Xiao, Da;Xu, Qingxuan;Wang, Su;Xiao, Da;Xu, Qingxuan;Wang, Su

作者机构:

关键词: CRISPR/Cas9; Ebony; Harmonia axyridis; pigmentation

期刊名称:INSECT MOLECULAR BIOLOGY ( 影响因子:2.3; 五年影响因子:2.9 )

ISSN: 0962-1075

年卷期: 2025 年 34 卷 2 期

页码:

收录情况: SCI

摘要: Melanin plays a pivotal role in insect body pigmentation, significantly contributing to their adaptation to diverse biotic and abiotic environmental challenges. Several genes involved in insect melanin synthesis showed pleiotropic effects on insect development and reproduction. Among these, the N-beta-alanyl dopamine synthetase gene (Ebony) is integral to the pigmentation process. However, the full spectrum of its pleiotropic impacts is not yet thoroughly understood. In this study, we identified and characterised the HaEbony gene in the Asian multi-coloured ladybird beetle (Harmonia axyridis) and found that HaEbony gene is a conserved gene within the Coleoptera order. We aimed to further explore the multiple roles of HaEbony in the physiology and behaviour in H. axyridis. The CRISPR/Cas9 system was applied to generate multiple HaEbony knockout allele (HaEbony+/-), showing nucleotide deletion in the G0 and G1 generations. Remarkably, the resultant HaEbony+/- mutants consistently displayed darker pigmentation than their wild-type counterparts across larval, pupal and adult stages. Furthermore, these HaEbony+/- individuals (G0) demonstrated an enhanced predatory efficiency, evidenced by a higher number of aphids consumed compared to the wild type. A significant finding was the reduced egg hatchability in both G0 and G1 generations of the HaEbony+/- group, highlighting a potential reproductive fitness cost associated with HaEbony deficiency. In conclusion, our study not only sheds light on the multifaceted roles of HaEbony in H. axyridis but also highlights the potential of employing CRISPR/Cas9-targeted modifications of the Ebony gene. Such genetic interventions could enhance the environmental adaptability and predatory efficacy of ladybirds, presenting a novel strategy in biological control application.

分类号:

  • 相关文献
作者其他论文 更多>>