Pangenome-Wide Association Study and Transcriptome Analysis Reveal a Novel QTL and Candidate Genes Controlling both Panicle and Leaf Blast Resistance in Rice
文献类型: 外文期刊
第一作者: Wang, Jian
作者: Wang, Jian;Hu, Haifei;Zhang, Shaohong;Yang, Wu;Dong, Jingfang;Yang, Tifeng;Ma, Yamei;Zhou, Lian;Chen, Jiansong;Nie, Shuai;Liu, Chuanguang;Liu, Bin;Zhao, Junliang;Wang, Jian;Hu, Haifei;Zhang, Shaohong;Yang, Wu;Dong, Jingfang;Yang, Tifeng;Ma, Yamei;Zhou, Lian;Chen, Jiansong;Nie, Shuai;Liu, Chuanguang;Liu, Bin;Zhao, Junliang;Wang, Jian;Hu, Haifei;Zhang, Shaohong;Yang, Wu;Dong, Jingfang;Yang, Tifeng;Ma, Yamei;Zhou, Lian;Chen, Jiansong;Nie, Shuai;Liu, Chuanguang;Liu, Bin;Zhao, Junliang;Wang, Jian;Hu, Haifei;Zhang, Shaohong;Yang, Wu;Dong, Jingfang;Yang, Tifeng;Ma, Yamei;Zhou, Lian;Chen, Jiansong;Nie, Shuai;Liu, Chuanguang;Liu, Bin;Zhao, Junliang;Zhu, Xiaoyuan;Yang, Jianyuan;Zhu, Xiaoyuan;Yang, Jianyuan;Jiang, Xianya;Ning, Yuese
作者机构:
关键词: Rice; Blast resistance; Pangenome-wide association study; Transcriptomic analysis; Candidate genes
期刊名称:RICE ( 影响因子:5.5; 五年影响因子:5.8 )
ISSN: 1939-8425
年卷期: 2024 年 17 卷 1 期
页码:
收录情况: SCI
摘要: Cultivating rice varieties with robust blast resistance is the most effective and economical way to manage the rice blast disease. However, rice blast disease comprises leaf and panicle blast, which are different in terms of resistance mechanisms. While many blast resistant rice cultivars were bred using genes conferring resistance to only leaf or panicle blast, mining durable and effective quantitative trait loci (QTLs) for both panicle and leaf blast resistance is of paramount importance. In this study, we conducted a pangenome-wide association study (panGWAS) on 9 blast resistance related phenotypes using 414 international diverse rice accessions from an international rice panel. This approach led to the identification of 74 QTLs associated with rice blast resistance. One notable locus, qPBR1, validated in a F4:5 population and fine-mapped in a Heterogeneous Inbred Family (HIF), exhibited broad-spectrum, major and durable blast resistance throughout the growth period. Furthermore, we performed transcriptomic analysis of 3 resistant and 3 sensitive accessions at different time points after infection, revealing 3,311 differentially expressed genes (DEGs) potentially involved in blast resistance. Integration of the above results identified 6 candidate genes within the qPBR1 locus, with no significant negative effect on yield. The results of this study provide valuable germplasm resources, QTLs, blast response genes and candidate functional genes for developing rice varieties with enduring and broad-spectrum blast resistance. The qPBR1, in particular, holds significant potential for breeding new rice varieties with comprehensive and durable resistance throughout their growth period.
分类号:
- 相关文献
作者其他论文 更多>>
-
An improved 3D-SwinT-CNN network to evaluate the fermentation degree of black tea
作者:Zhu, Fengle;Wang, Jian;Zhang, Yuqian;Zhao, Zhangfeng;Shi, Jiang;He, Mengzhu
关键词:Black tea fermentation; Hyperspectral imaging; 3D-SwinT-CNN; 3D convolutional neural networks; Swin transformer
-
A survey of efficient fine-tuning methods for Vision-Language Models - Prompt and Adapter
作者:Xing, Jialu;Liu, Jianping;Sun, Lulu;Chen, Xi;Gu, Xunxun;Wang, Yingfei;Liu, Jianping;Wang, Jian;Liu, Jianping
关键词:Vision-language; Computer vision; Efficient fine-tuning; Pre-training model; Prompt; Adapter
-
The Function of SD1 on Shoot Length and its Pyramiding Effect on Shoot Length and Plant Height in Rice (Oryza sativa L.)
作者:Dong, Jingfang;Ma, Yamei;Hu, Haifei;Wang, Jian;Yang, Wu;Fu, Hua;Zhang, Longting;Chen, Jiansong;Zhou, Lian;Li, Wenhui;Nie, Shuai;Zhao, Junliang;Liu, Bin;Yang, Tifeng;Zhang, Shaohong;Zhang, Longting;Liu, Ziqiang
关键词:Shoot Length; Plant Height; Causal gene; Allele Mining; Pyramiding Effect; Rice
-
Mapping Maize Planting Densities Using Unmanned Aerial Vehicles, Multispectral Remote Sensing, and Deep Learning Technology
作者:Shen, Jianing;Hu, Jingyu;Wang, Jian;Shu, Meiyan;Guo, Wei;Qiao, Hongbo;Yue, Jibo;Wang, Qilei;Zhao, Meng;Liu, Yang;Niu, Qinglin;Niu, Qinglin
关键词:maize planting density; object detection; machine learning; vegetation index; YOLO; GLCM
-
Plant-LncPipe: a computational pipeline providing significant improvement in plant lncRNA identification
作者:Tian, Xue-Chan;Chen, Zhao-Yang;Shi, Tian-Le;Yan, Xue-Mei;Bao, Yu-Tao;Li, Zhi-Chao;Ma, Hai-Yao;Mao, Jian-Feng;Nie, Shuai;Nie, Shuai;Nie, Shuai;Jia, Kai-Hua;Zhao, Wei;Mao, Jian-Feng
关键词:
-
Greenhouse cultivation enhances pesticide bioaccumulation in cowpeas following repeated spraying
作者:Cui, Kai;Wang, Jian;Guan, Shuai;Liang, Jingyun;Fang, Liping;Li, Teng;Dong, Zhan;Ding, Ruiyan;Ma, Guoping;Wu, Xiaohu;Zheng, Yongquan
关键词:Pesticide residue; Cowpea; Distribution; Greenhouse and open-field scenarios; Risk assessment
-
Pretrained Deep Learning Networks and Multispectral Imagery Enhance Maize LCC, FVC, and Maturity Estimation
作者:Hu, Jingyu;Feng, Hao;Shen, Jianing;Wang, Jian;Guo, Wei;Qiao, Hongbo;Yue, Jibo;Wang, Qilei;Liu, Yang;Liu, Yang;Feng, Haikuan;Yang, Hao;Niu, Qinglin;Niu, Qinglin
关键词:unmanned aerial vehicle; crop leaf chlorophyll content; fractional vegetation cover; maturity; deep learning; ensemble learning; maize