OsCBL1 affects rice seedling growth by modulating nitrate and phosphate responses
文献类型: 外文期刊
第一作者: Hu, Zhao
作者: Hu, Zhao;Guo, Yutan;Ying, Suping;Chen, Jie;Zhu, Danpeng;Cai, Lu;Wang, Xiaowei;Peng, Xiaojue;Yuan, Fengtong;Liu, Wei
作者机构:
关键词: Oryza sativa; OsCBL1; Nitrogen; Phosphorus
期刊名称:GENE ( 影响因子:3.688; 五年影响因子:3.329 )
ISSN: 0378-1119
年卷期: 2021 年 796 卷
页码:
收录情况: SCI
摘要: To sustain high crop yield, a comprehensive understanding of the processes by which plants sense and acquire nutrients is of great importance. For the efficiency of crop fertilizer, it is essential to exploring the the signaling networks that coordinate the usage of nitrogen and phosphorus, the most demanding two mineral nutrients in plants. Here, we found that a protein OsCBL1 (Calcineurin B-like protein 1) is involved in the regulation of nitrogen and phosphorus signaling in rice. The nitrogen element, existing as ammonium or nitrate in the environment, affects nitrate signaling in vivo and root growth. Compared with the wild type, knockdown of OsCBL1 inhibit the growth of rice to the same extent, when nitrogen is deficient or nitrogen is present in the form of ammonium-nitrate mixture. The growth inhibition by OsCBL1-knockdown is more pronounced when nitrogen is present as ammonium. The phosphorus starvation-responsive genes is also regulated by the compound of nitrogen present in vitro and OsCBL1, while the phosphorus content is not affected. These results suggest that OsCBL1 may be involved in the response of rice to nitrogen and phosphorus nutrition in the environment, as well as the regulation of rice growth by environmental nutrition.
分类号:
- 相关文献
作者其他论文 更多>>
-
Effect of crowding stress on liver health, gut permeability and gut microbiota of genetically improved farmed tilapia (GIFT, Oreochromis niloticus)
作者:Zhang, Jian;Chen, Jie;Liang, Hui;Li, Ming;Zhou, Wenhao;Zhou, Zhigang;Yang, Yalin;Zhang, Zhen;Ran, Chao;Ding, Qianwen
关键词:Crowing stress; Apoptosis; Gut permeability; Gut microbiota; GIFT
-
D-Limonene Is the Active Olfactory Attractant in Orange Juice for Bactrocera dorsalis (Insecta: Diptera: Tephritidae)
作者:Liu, Leyuan;Zhou, Hongxu;Yuan, Jinxi;Liu, Wei;Wang, Guirong;Yang, Lang;Zhang, Jie;Liu, Chenhao
关键词:B. dorsalis; behavior regulation technology; D-Limonene; odor receptor
-
Integrative analysis of metabolome and transcriptome reveals regulatory mechanisms of flavonoid biosynthesis in soybean under salt stress
作者:Wang, Yubin;Liu, Wei;Li, Wei;Wang, Caijie;Dai, Haiying;Xu, Ran;Zhang, Yanwei;Zhang, Lifeng;Wang, Yubin;Liu, Wei;Li, Wei;Wang, Caijie;Dai, Haiying;Xu, Ran;Zhang, Yanwei;Zhang, Lifeng
关键词:soybean; salt stress; metabolome; transcriptome; flavonoid; regulatory mechanism
-
A vesicular stomatitis virus-based African swine fever vaccine prototype effectively induced robust immune responses in mice following a single-dose immunization
作者:Ma, Yunyun;Shao, Junjun;Liu, Wei;Gao, Shandian;Peng, Decai;Miao, Chun;Yang, Sicheng;Hou, Zhuo;Zhou, Guangqing;Chang, Huiyun;Qi, Xuefeng
关键词:African swine fever virus; vaccine prototypes; vesicular stomatitis virus; safety; immune potency
-
Effects of dietary microbial protease on growth performance, nutrient apparent digestibility, hepatic antioxidant capacity, protease activities and intestinal microflora in juvenile genetically improved farmed tilapia, Oreochromis niloticus
作者:Wu, Jianjun;Wang, Qijun;Zhang, Chengjie;Fu, Dabo;Xu, Li;Zhou, Ying;Yu, Ting;Liu, Wei;Jiang, Ming;Wu, Jinping;Wu, Jinping
关键词:Different proteases; Growth performance; Apparent digestibility; Protease activities; Intestine microbiota
-
Inhibition of cinnamic acid and its derivatives on polyphenol oxidase: Effect of inhibitor carboxyl group and system pH
作者:Jiang, Hongwei;Zhou, Lei;Wang, Yue;Peng, Shengfeng;Yu, Wenzhi;Tian, Yuqing;Liu, Junping;Liu, Wei;Liu, Guangxian;Liu, Wei
关键词:Polyphenol oxidase; Cinnamic acid; Inhibition; Carboxyl groups; pH
-
Beyond pathways: Accelerated flavonoids candidate identification and novel exploration of enzymatic properties using combined mapping populations of wheat
作者:Chen, Jie;Zhang, Yueqi;Wei, Jiaqi;Hu, Xin;Yin, Huanran;Liu, Wei;Li, Dongqin;Chen, Wei;Chen, Jie;Zhang, Yueqi;Wei, Jiaqi;Hu, Xin;Yin, Huanran;Liu, Wei;Li, Dongqin;Chen, Wei;Chen, Jie;Zhang, Yueqi;Wei, Jiaqi;Hu, Xin;Yin, Huanran;Liu, Wei;Chen, Wei;Chen, Jie;Wei, Jiaqi;Tian, Wenfei;Hao, Yuanfeng;He, Zhonghu;Fernie, Alisdair R.
关键词:mGWAS; mQTL; flavonoid pathway; wheat; enzymatic engineering