SOIL MOISTURE MONITORING OF COTTON FARMLAND WITH REMOTE SENSING IMAGE FROM LANDSAT 5 (TM)
文献类型: 外文期刊
第一作者: Xu, Xingang
作者: Xu, Xingang;Wang, Jihua;Huang, Wenjiang;Li, Cunjun;Zhao, Chunjiang
作者机构:
关键词: soil moisture; Landsat 5 (TM); spectral feature space
期刊名称:INTELLIGENT AUTOMATION AND SOFT COMPUTING ( 影响因子:1.647; 五年影响因子:1.469 )
ISSN: 1079-8587
年卷期: 2010 年 16 卷 6 期
页码:
收录情况: SCI
摘要: Soil moisture is the most direct and important indicator for monitoring drought. In the paper, to estimate soil moisture of different depth in cotton farmland in Sinkiang Municipality, China, using the image from Landsat 5 (TM) with measured data in field makes the remote sensing models of monitoring moisture on basis of the distributional characteristics of soil moisture in spectral feature spaces with both Nir (near infrared)-Red and Nir-Swir (short wave infrared). As far as three different depths of 5cm, 10cm and 20cm are concerned, the result shows that whether for Nir-Red or Nir-Swir SFS, the two models gradually display better performance with depth increase, but for the same depth, the Nir-Swir model always has higher accuracy than Nir-Red. Lastly, soil moisture spatial map is successfully made by applying the Nir-Swir model and illustrates for cotton scientific irrigation and precise agriculture.
分类号:
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine
-
Microscopic observation and transcriptome analysis provide insights into mechanisms of hybrid incompatibility in Rhododendron
作者:Xie, Weijia;Li, Shifeng;Peng, Lvchun;Wang, Jihua;Zhang, Lu;Song, Jie;Huang, Hui;Oba, Elias G.
关键词:Rhododendron; Interspecific hybridization; Intraspecific hybridization; Microscopic observation; Transcriptome analysis
-
Complete mitochondrial genome of Basilepta melanopus Lefèvre, 1893 (coleoptera: chrysomelidae: eumolpinae), a tea pest from Southern China
作者:Liao, Yonglin;Chen, Weiping;Fang, Yurong;Wang, Jihua;Wang, Jihua
关键词:Basilepta melanopus; next generation sequence; mitochondrial genome; tea pest; eumolpinae; phylogeny
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight