An Optimized Multi-Stage Framework for Soil Organic Carbon Estimation in Citrus Orchards Based on FTIR Spectroscopy and Hybrid Machine Learning Integration

文献类型: 外文期刊

第一作者: Wei, Yingying

作者: Wei, Yingying;Mo, Xiaoxiang;Wu, Saisai;Chen, He;Qin, Yuanyuan;Zeng, Zhikang;Yu, Shengxin

作者机构:

关键词: Fourier Transform Infrared Spectroscopy (FTIR); soil organic carbon (SOC); multi-stage modeling framework; variable selection; machine learning integration; citrus orchard

期刊名称:AGRICULTURE-BASEL ( 影响因子:3.6; 五年影响因子:3.8 )

ISSN:

年卷期: 2025 年 15 卷 13 期

页码:

收录情况: SCI

摘要: Soil organic carbon (SOC) is a critical indicator of soil health and carbon sequestration potential. Accurate, efficient, and scalable SOC estimation is essential for sustainable orchard management and climate-resilient agriculture. However, traditional visible-near-infrared (Vis-NIR) spectroscopy often suffers from limited chemical specificity and weak adaptability in heterogeneous soil environments. To overcome these limitations, this study develops a five-stage modeling framework that systematically integrates Fourier Transform Infrared (FTIR) spectroscopy with hybrid machine learning techniques for non-destructive SOC prediction in citrus orchard soils. The proposed framework includes (1) FTIR spectral acquisition; (2) a comparative evaluation of nine spectral preprocessing techniques; (3) dimensionality reduction via three representative feature selection algorithms, namely the Successive Projections Algorithm (SPA), Competitive Adaptive Reweighted Sampling (CARS), and Principal Component Analysis (PCA); (4) regression modeling using six machine learning algorithms, namely the Random Forest (RF), Support Vector Regression (SVR), Gray Wolf Optimized SVR (SVR-GWO), Partial Least Squares Regression (PLSR), Principal Component Regression (PCR), and the Back-propagation Neural Network (BPNN); and (5) comprehensive performance assessments and the identification of the optimal modeling pathway. The results showed that second-derivative (SD) preprocessing significantly enhanced the spectral signal-to-noise ratio. Among feature selection methods, the SPA reduced over 300 spectral bands to 10 informative wavelengths, enabling efficient modeling with minimal information loss. The SD + SPA + RF pipeline achieved the highest prediction performance (R2 = 0.84, RMSE = 4.67 g/kg, and RPD = 2.51), outperforming the PLSR and BPNN models. This study presents a reproducible and scalable FTIR-based modeling strategy for SOC estimation in orchard soils. Its adaptive preprocessing, effective variable selection, and ensemble learning integration offer a robust solution for real-time, cost-effective, and transferable carbon monitoring, advancing precision soil sensing in orchard ecosystems.

分类号:

  • 相关文献
作者其他论文 更多>>