Global sensitivity analysis of the AquaCrop model for winter wheat under different water treatments based on the extended Fourier amplitude sensitivity test

文献类型: 外文期刊

第一作者: Xing Hui-min

作者: Xing Hui-min;Chen Yi-jin;Xing Hui-min;Xu Xin-gang;Li Zhen-hai;Feng Hai-kuan;Yang Gui-jun;Chen Zhao-xia;Xing Hui-min;Xu Xin-gang;Li Zhen-hai;Feng Hai-kuan;Yang Gui-jun;Chen Zhao-xia;Xing Hui-min;Xu Xin-gang;Li Zhen-hai;Feng Hai-kuan;Yang Gui-jun;Chen Zhao-xia

作者机构:

关键词: winter wheat;AquaCrop model;sensitivity analysis;EFAST method;sensitive parameter

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2017 年 16 卷 11 期

页码:

收录情况: SCI

摘要: Sensitivity analysis (SA) is an effective tool for studying crop models; it is an important link in model localization and plays an important role in crop model calibration and application. The objectives were to (i) determine influential and non-influential parameters with respect to above ground biomass (AGB), canopy cover (CC), and grain yield of winter wheat in the Beijing area based on the AquaCrop model under different water treatments (rainfall, normal irrigation, and over-irrigation); and (ii) generate an AquaCrop model that can be used in the Beijing area by setting non-influential parameters to fixed values and adjusting influential parameters according to the SA results. In this study, field experiments were conducted during the 2012-2013, 2013-2014, and 2014-2015 winter wheat growing seasons at the National Precision Agriculture Demonstration Research Base in Beijing, China. The extended Fourier amplitude sensitivity test (EFAST) method was used to perform SA of the AquaCrop model using 42 crop parameters, in order to verify the SA results, data from the 2013-2014 growing season were used to calibrate the AquaCrop model, and data from 2012-2013 and 2014-2015 growing seasons were validated. For AGB and yield of winter wheat, the total order sensitivity analysis had more sensitive parameters than the first order sensitivity analysis. For the AGB time-series, parameter sensitivity was changed under different water treatments; in comparison with the non-stressful conditions (normal irrigation and over-irrigation), there were more sensitive parameters under water stress (rainfall), while root development parameters were more sensitive. For CC with time-series and yield, there were more sensitive parameters under water stress than under no water stress. Two parameters sets were selected to calibrate the AquaCrop model, one group of parameters were under water stress, and the others were under no water stress, there were two more sensitive parameters (growing degree-days (GDD) from sowing to the maximum rooting depth (root) and the maximum effective rooting depth (rtx)) under water stress than under no water stress. The results showed that there was higher accuracy under water stress than under no water stress. This study provides guidelines for AquaCrop model calibration and application in Beijing, China, as well providing guidance to simplify the AquaCrop model and improve its precision, especially when many parameters are used.

分类号:

  • 相关文献

[1]Estimation of Winter Wheat Biomass and Yield by Combining the AquaCrop Model and Field Hyperspectral Data. Jin, Xiuliang,Kumar, Lalit,Li, Zhenhai,Xu, Xingang,Yang, Guijun,Li, Zhenhai,Xu, Xingang,Yang, Guijun,Wang, Jihua. 2016

[2]Estimation of water productivity in winter wheat using the AquaCrop model with field hyperspectral data. Jin, Xiuliang,Jin, Xiuliang,Yang, Guijun,Li, Zhenhai,Xu, Xingang,Jin, Xiuliang,Yang, Guijun,Li, Zhenhai,Xu, Xingang,Wang, Jihua,Lan, Yubin. 2018

[3]GLOBAL SENSITIVITY ANALYSIS OF WINTER WHEAT YIELD AND PROCESS-BASED VARIABLE WITH AQUACROP MODEL. Xing, Huimin,Yang, Fuqin,Xing, Huimin,Xu, Xingang,Yang, Fuqin,Feng, Haikuan,Yang, Guijin,Xing, Huimin,Xu, Xingang,Yang, Fuqin,Feng, Haikuan,Yang, Guijin. 2016

[4]Effect of Diacylglycerol on Postprandial Serum Triacylglycerol Concentration: A Meta-analysis. Xu, Tongcheng,Zhang, Zhiguo,Li, Duo,Li, Xia,Xu, Tongcheng,Ma, Xiaohang,Zhang, Tiansong. 2009

[5]Development of an AutoWEP distributed hydrological model and its application to the upstream catchment of the Miyun Reservoir. Tian, Yu,Lei, Xiaohui,Liao, Weihong,Jia, Yang Wen,Jiang, Yun Zhong,Wang, Hao,Bai, Wei.

[6]Model AVSWAT apropos of simulating non-point source pollution in Taihu lake basin. Zhang, Qiu-Ling,Chen, Ying-Xu,Jilani, Ghulam,Shamsi, Imran Haider,Yu, Qiao-Gang.

[7]Sensitivity and uncertainty analysis of CENTURY-modeled SOC dynamics in upland soils under different climate-soil-management conditions: a case study in China. Liu, Xiaoyu,Zhao, Yongcun,Shi, Xuezheng,Wang, Shihang,Yu, Dongsheng,Liu, Xiaoyu,Zhao, Yongcun,Shi, Xuezheng,Liu, Yang,Wang, Shihang.

[8]DEVELOPMENT OF FARMLAND DROUGHT ASSESSMENT TOOLS BASED ON THE ASSIMILATION OF REMOTELY SENSED CANOPY BIOPHYSICAL VARIABLES INTO CROP WATER RESPONSE MODELS. Casa, R.,Silvestro, P. C.,Yang, H.,Yang, G.,Pignatti, S.,Pascucci, S.,Yang, H.,Yang, G.. 2015

[9]Multi-criteria land use suitability analysis for livestock development planning in Hangzhou metropolitan area, China. Qiu, Lefeng,Zhu, Jinxia,Pan, Yi,Hu, Wei,Amable, Gabriel S.. 2017

[10]Simulation of long-term spring wheat yields, soil organic C, N and water dynamics using DSSAT-CSM in a semi-arid region of the Canadian prairies. Li, Zhuo Ting,Yang, J. Y.,Drury, C. F.,He, W. T.,Li, Zhuo Ting,Li, Xiao Gang,Smith, W. N.,Grant, B.,Lemke, R. L.,He, W. T..

[11]Uncertainty analysis of modeled carbon fluxes for a broad-leaved Korean pine mixed forest using a process-based ecosystem model. Zhang, Li,Yu, Guirui,He, Honglin,Zhang, Leiming,Gu, Fengxue,Han, Shijie. 2012

[12]Applicability evaluation of the SWIM at river basins of the black soil region in Northeast China: A case study of the upper and middle Wuyuer River basin. Yang, Zhiyuan,Zang, Shuying,Gao, Chao,Yang, Xiuchun. 2017

[13]Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield. Ma, Guannan,Huang, Jianxi,Wu, Wenbin,Zou, Jinqiu,Fan, Jinlong,Wu, Sijie.

[14]Morphological and yield responses of winter wheat (Triticum aestivum L.) to raised bed planting in Northern China. Wang, Fahong,Kong, Ling'an,Li, Shengdong,Si, Jisheng,Feng, Bo,Zhang, Bin,Wang, Fahong,Sayre, Ken. 2011

[15]Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China. Zhang, Jiyang,Sun, Jingsheng,Duan, Aiwang,Wang, Jinglei,Shen, Xiaojun,Liu, Xiaofei.

[16]Gibberellins regulate the stem elongation rate without affecting the mature plant height of a quick development mutant of winter wheat (Triticum aestivum L.). Zhang, Ning,Xie, Yong-Dun,Guo, Hui Jun,Zhao, Lin-Shu,Xiong, Hong-Chun,Gu, Jia-Yu,Li, Jun-Hui,Zhao, Zi-Wei,Zhao, Shi-Rong,Liu, Lu-Xiang,Kong, Fu-Quan,Sui, Li.

[17]Estimating on-farm wheat yield response to potassium and potassium uptake requirement in China. Zhan, Ai,Zou, Chunqin,Cui, Zhenling,Chen, Xinping,Ye, Youliang,Liu, Zhaohui.

[18]Characterisation of high- and low-molecular-weight glutenin subunit genes in Chinese winter wheat cultivars and advanced lines using allele-specific markers and SDS-PAGE. Yang, F. P.,Wang, L. H.,Wang, J. W.,He, X. Y.,Xia, X. C.,He, Z. H.,Yang, F. P.,Yang, W. X.,Wang, J. W.,Zhang, X. K.,Shang, X. W.,He, Z. H..

[19]EFFECT OF EARLY-STAGE REGULATED DEFICIT IRRIGATION ON STEM LODGING RESISTANCE, LEAF PHOTOSYNTHESIS, ROOT RESPIRATION AND YIELD STABILITY OF WINTER WHEAT UNDER POST-ANTHESIS WATER STRESS CONDITIONS. Ma, Shou-Chen,Ma, Shou-Chen,Duan, Ai-Wang,Ma, Shou-Tian,Yang, Shen-Jiao,Ma, Shou-Chen.

[20]Nitrogen use by winter wheat and changes in soil nitrate nitrogen levels with supplemental irrigation based on measurement of moisture content in various soil layers. Guo, Zengjiang,Zhang, Yongli,Shi, Yu,Yu, Zhenwen,Zhao, Junye.

作者其他论文 更多>>