Research on Universality of Least Squares Support Vector Machine Method for Estimating Leaf Area Index of Winter Wheat

文献类型: 外文期刊

第一作者: Xie Qiao-yun

作者: Xie Qiao-yun;Huang Wen-jiang;Peng Dai-liang;Xie Qiao-yun;Liang Dong;Huang Lin-sheng;Zhang Dong-yan;Xie Qiao-yun;Liang Dong;Huang Lin-sheng;Zhang Dong-yan;Song Xiao-yu;Yang Gui-jun

作者机构:

关键词: Least squares support vector machine;Leaf area index;Hyperspectral;Universality;Winter wheat

期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )

ISSN: 1000-0593

年卷期: 2014 年 34 卷 2 期

页码:

收录情况: SCI

摘要: Leaf area index (LAI) is one of the most important parameters for evaluating winter wheat growth status and forecasting its yield. Hyperspectral remote sensing is a new technical approach that can be used to acquire the instant information of vegetation LAI at large scale. This study aims to explore the capability of least squares support vector machines (LS-SVM) method to winter wheat LAI estimation with hyperspectral data. After the compression of PHI airborne data with principal component analysis (PCA), the sample set based on the measured LAI data and hyperspectral reflectance data was established. Then the method of LS-SVM was developed respectively to estimate winter wheat LAI under four different conditions, to be specific, different plant type cultivars, different periods, different nitrogenous fertilizer and water conditions. Compared with traditional NDVI model estimation results, each experiment of LS-SVM model yielded higher determination coefficient as well as lower RMSE value, which meant that the LS-SVM method performed better than the NDVI method. In addition, NDVI model was unstable for winter wheat under the condition of different plant type cultivars, different nitrogenous fertilizer and different water, while the LS-SVM model showed good stability. Therefore, LS-SVM has high accuracy for learning and considerable universality for estimation of LAI of winter wheat under different conditions using hyperspectral data.

分类号:

  • 相关文献

[1]Estimating the crop leaf area index using hyperspectral remote sensing. Liu Ke,Zhou Qing-bo,Wu Wen-bin,Tang Hua-jun,Liu Ke,Zhou Qing-bo,Wu Wen-bin,Tang Hua-jun,Wu Wen-bin,Xia Tian.

[2]Comparative Study on Remote Sensing Invertion Methods for Estimating Winter Wheat Leaf Area Index. Xie Qiao-yun,Huang Wen-jiang,Peng Dai-liang,Zhang Qing,Xie Qiao-yun,Liang Dong,Huang Lin-sheng,Zhang Dong-yan,Cai Shu-hong,Yang Gui-jun. 2014

[3]Evaluating Multispectral and Hyperspectral Satellite Remote Sensing Data for Estimating Winter Wheat Growth Parameters at Regional Scale in the North China Plain. Koppe, Wolfgang,Gnyp, Martin L.,Bareth, Georg,Koppe, Wolfgang,Chen, Xinping,Zhang, Fusuo,Li, Fei,Miao, Yuxin,Miao, Yuxin. 2010

[4]Assimilation of Two Variables Derived from Hyperspectral Data into the DSSAT-CERES Model for Grain Yield and Quality Estimation. Li, Zhenhai,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Li, Zhenhai,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Li, Zhenhai,Wang, Jihua,Wang, Jihua,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Jin, Xiuliang. 2015

[5]Development and implementation of a multiscale biomass model using hyperspectral vegetation indices for winter wheat in the North China Plain. Bareth, Georg,Lenz-Wiedemann, Victoria I. S.,Koppe, Wolfgang,Gnyp, Martin L.,Bareth, Georg,Li, Fei,Lenz-Wiedemann, Victoria I. S.,Chen, Xinping,Gnyp, Martin L.,Li, Fei,Miao, Yuxin,Jia, Liangliang,Koppe, Wolfgang,Hennig, Simon D.,Jia, Liangliang,Chen, Xinping,Zhang, Fusuo,Laudien, Rainer. 2014

[6]Estimating Winter Wheat Leaf Area Index From Ground and Hyperspectral Observations Using Vegetation Indices. Xie, Qiaoyun,Huang, Wenjiang,Zhang, Bing,Dong, Yingying,Xie, Qiaoyun,Chen, Pengfei,Song, Xiaoyu,Pascucci, Simone,Pignatti, Stefano,Laneve, Giovanni. 2016

[7]Estimating wheat yield and quality by coupling the DSSAT-CERES model and proximal remote sensing. Li, Zhenhai,Jin, Xiuliang,Zhao, Chunjiang,Xu, Xingang,Yang, Guijun,Li, Cunjun,Shen, Jiaxiao,Li, Zhenhai,Jin, Xiuliang,Zhao, Chunjiang,Xu, Xingang,Yang, Guijun,Li, Cunjun,Shen, Jiaxiao,Zhao, Chunjiang,Zhao, Chunjiang,Li, Zhenhai,Wang, Jihua,Wang, Jihua,Shen, Jiaxiao.

[8]Estimation of Regional Leaf Area Index by Remote Sensing Inversion of PROSAIL Canopy Spectral Model. Li Shu-min,Li Hong,Zhou Lian-di,Sun Dan-feng. 2009

[9]REGIONAL YIELD PREDICTION OF WINTER WHEAT BASED ON RETRIEVAL OF LEAF AREA INDEX BY REMOTE SENSING TECHNOLOGY. Ren, Jianqiang,Chen, Zhongxin,Zhou, Qingbo,Ren, Jianqiang,Chen, Zhongxin,Zhou, Qingbo,Yang, Xiaomei,Liu, Xingren. 2009

[10]Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Huang, Jianxi,Ma, Hongyuan,Li, Xinlu,Zhang, Xiaodong,Huang, Jianxi,Sedano, Fernando,Liang, Shunlin,Huang, Yanbo,Liang, Shunlin,Tian, Liyan,Fan, Jinlong,Wu, Wenbin.

[11]Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Huang, Ni,Niu, Zheng,Zhan, Yulin,Xu, Shiguang,Wu, Chaoyang,Gao, Shuai,Hou, Xuehui,Cai, Dewen,Huang, Ni,Xu, Shiguang,Hou, Xuehui,Cai, Dewen,Tappert, Michelle C.,Huang, Wenjiang.

[12]Hyperspectral Remote Sensing Monitoring of Grassland Degradation. Wang Huan-jiong,Fan Wen-jie,Cui Yao-kui,Yan Bin-yan,Wu Dai-hui,Xu Xi-ru,Wang Huan-jiong,Wang Huan-jiong,Zhou Lei. 2010

[13]Monitoring plant response to phenanthrene using the red edge of canopy hyperspectral reflectance. Zhu, Linhai,Wang, Jianjian,Jiang, Lianhe,Zheng, Yuanrun,Zhu, Linhai,Chen, Zhongxin,Wang, Jianjian,Ding, Jinzhi,Ding, Jinzhi,Yu, Yunjiang,Li, Junsheng,Xiao, Nengwen,Rimmington, Glyn M..

[14]Estimation of herbage biomass and nutritive status using band depth features with partial least squares regression in Inner Mongolia grassland, China. Gong, Zhe,Kawamura, Kensuke,Ishikawa, Naoto,Inaba, Mizuki,Alateng, Dalai.

[15]Analysis of spectral difference between the foreside and backside of leaves in yellow rust disease detection for winter wheat. Yuan, Lin,Zhang, Jing-Cheng,Wang, Ke,Wang, Ji-Hua,Yuan, Lin,Zhang, Jing-Cheng,Wang, Ji-Hua,Zhao, Jin-Ling,Loraamm, Rebecca-W.,Huang, Wen-Jiang.

[16]Monitoring total nitrogen content in soil of cultivated land based on hyperspectral technology. Gu, Xiaohe,Wang, Lizhi,Zhang, Liyan,Yang, Guijun. 2017

[17]Stitching of hyper-spectral UAV images based on feature bands selection. Xia, L.,Zhang, R. R.,Chen, L. P.,Jiang, H. J.,Xia, L.,Zhang, R. R.,Chen, L. P.,Jiang, H. J.,Xia, L.,Zhang, R. R.,Chen, L. P.,Jiang, H. J.,Xia, L.,Zhang, R. R.,Chen, L. P.,Jiang, H. J.,Zhao, F.. 2016

[18]The inversion model of soil organic matter of cultivated land based on hyperspectral technology. Gu, Xiaohe,Wang, Yancang,Song, Xiaoyu,Xu, Xingang. 2015

[19]Study on non-destructive estimation of nitrogen concentration of water hyacinth by hyperspectral data. Wang, Jingjing,Sun, Ling,Liu, Huazhou,Wang, Jingjing. 2016

[20]Differentiation of Yellow Rust and Powdery Mildew in Winter Wheat and Retrieving of Disease Severity Based on Leaf Level Spectral Analysis. Yuan Lin,Zhang Jing-cheng,Zhao Jin-ling,Wang Ji-hua,Yuan Lin,Zhang Jing-cheng,Wang Ji-hua,Huang Wen-jiang. 2013

作者其他论文 更多>>