Detecting Aphid Density of Winter Wheat Leaf Using Hyperspectral Measurements

文献类型: 外文期刊

第一作者: Luo, Juhua

作者: Luo, Juhua;Ma, Ronghua;Huang, Wenjiang;Zhao, Jinling;Zhang, Jingcheng;Zhao, Chunjiang

作者机构:

关键词: Aphid density;partial least square regression (PLSR);spectral feature (SF);winter wheat

期刊名称:IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING ( 影响因子:3.784; 五年影响因子:3.734 )

ISSN: 1939-1404

年卷期: 2013 年 6 卷 2 期

页码:

收录情况: SCI

摘要: Wheat aphid, Sitobion avenae F. is one of the most destructive pests that emerge in northwest China almost every year, impacting on the production of winter wheat. Hyperspectral remote sensing has been demonstrated to be superior to a traditional method in detecting diseases and pests. In this study, spectral features (SFs) were examined by four methods to detect aphid density of wheat leaf and model was established to estimate aphid density using partial least square regression (PLSR). A total of 60 wheat leaves with different aphid densities were selected. Aphid density of the leaves was first visually estimated, and then the reflectance of leaves was measured in the spectral range of 350-2500 nm using a spectroradiometer coupling with a leaf clip. A total of 48 spectral features were obtained and examined via correlation analysis, independent t-test by spectral derivative method, continuous removal method, continuous wavelet analysis (CWA) and commonly used vegetation indices for stress detection. Based on variable importance in projection (VIP), five spectral features (VIP >= 1) were selected from 17 spectral features due to their strong correlation with aphid density (R-2 >= 0.5) to establish the model for estimating aphid density by PLSR. The result showed that the model had a great potential in detecting aphid density with a relative root mean square error (RMSE) of 15 and a coefficient of determination (R-2) of 0.77.

分类号:

  • 相关文献

[1]Evaluation of spectral indices and continuous wavelet analysis to quantify aphid infestation in wheat. Luo, Juhua,Huang, Wenjiang,Yuan, Lin,Zhao, Chunjiang,Zhang, Jingcheng,Zhao, Jinling,Du, Shizhou.

[2]Differentiation of Yellow Rust and Powdery Mildew in Winter Wheat and Retrieving of Disease Severity Based on Leaf Level Spectral Analysis. Yuan Lin,Zhang Jing-cheng,Zhao Jin-ling,Wang Ji-hua,Yuan Lin,Zhang Jing-cheng,Wang Ji-hua,Huang Wen-jiang. 2013

[3]Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Zhang, Jing-Cheng,Wang, Ji-hua,Huang, Wen-jiang,Yuan, Lin,Luo, Ju-hua,Zhang, Jing-Cheng,Pu, Rui-liang,Zhang, Jing-Cheng,Yuan, Lin. 2012

[4]Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Yuan, Lin,Nie, Chenwei,Wang, Jihua,Zhang, Jingcheng,Yuan, Lin,Nie, Chenwei,Wang, Jihua,Zhang, Jingcheng,Huang, Yanbo,Loraamm, Rebecca W.. 2014

[5]Morphological and yield responses of winter wheat (Triticum aestivum L.) to raised bed planting in Northern China. Wang, Fahong,Kong, Ling'an,Li, Shengdong,Si, Jisheng,Feng, Bo,Zhang, Bin,Wang, Fahong,Sayre, Ken. 2011

[6]Estimating Winter Wheat Leaf Area Index From Ground and Hyperspectral Observations Using Vegetation Indices. Xie, Qiaoyun,Huang, Wenjiang,Zhang, Bing,Dong, Yingying,Xie, Qiaoyun,Chen, Pengfei,Song, Xiaoyu,Pascucci, Simone,Pignatti, Stefano,Laneve, Giovanni. 2016

[7]Winter wheat biomass estimation based on canopy spectra. Zheng Ling,Zhu Dazhou,Zhang Baohua,Wang Cheng,Zhao Chunjiang,Zheng Ling,Liang Dong. 2015

[8]MONITORING WINTER WHEAT MATURITY BY HYPERSPECTRAL VEGETATION INDICES. Wang, Qian,Huang, Yuanfang,Wang, Qian,Li, Cunjun,Wang, Jihua,Song, Xiaoyu,Huang, Wenjiang. 2012

[9]Yield loss compensation effect and water use efficiency of winter wheat under double-blank row mulching and limited irrigation in northern China. Yan, Qiuyan,Yang, Feng,Dong, Fei,Lu, Jinxiu,Li, Feng,Zhang, Jiancheng,Yan, Qiuyan,Duan, Zengqiang,Lou, Ge. 2018

[10]Discrimination of yellow rust and powdery mildew in wheat at leaf level using spectral signatures. Yuan, Lin,Zhang, Jingcheng,Zhao, Jinling,Du, Shizhou,Huang, Wenjiang,Wang, Jihua. 2012

[11]SELECTION OF SPECTRAL CHANNELS FOR SATELLITE SENSORS IN MONITORING YELLOW RUST DISEASE OF WINTER WHEAT. Yuan, Lin,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Wang, Jihua. 2013

[12]Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions. Pang, Huan-Cheng,Li, Yu-Yi,Liang, Ye-Sen,Yang, Jin-Song. 2010

[13]Damage Mapping of Powdery Mildew in Winter Wheat with High-Resolution Satellite Image. Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Wang, Jihua,Zhang, Jingcheng,Wang, Jihua,Zhang, Jingcheng,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Wang, Jihua,Shi, Yeyin. 2014

[14]Optimization of sampling basic unit size on spatial sampling for estimating winter wheat sown acreage. Wang Di,Zhou Qingbo,Chen Zhongxin,Liu Jia. 2012

[15]Evaluating Multispectral and Hyperspectral Satellite Remote Sensing Data for Estimating Winter Wheat Growth Parameters at Regional Scale in the North China Plain. Koppe, Wolfgang,Gnyp, Martin L.,Bareth, Georg,Koppe, Wolfgang,Chen, Xinping,Zhang, Fusuo,Li, Fei,Miao, Yuxin,Miao, Yuxin. 2010

[16]Monitoring and Forecasting Winter Wheat Freeze Injury and Yield from Multi-Temporal Remotely Sensed Data. Wang, Huifang,Huo, Zhiguo,Zhou, Guangsheng,Wu, Li,Wang, Huifang,Feng, Haikuan. 2016

[17]Hyperspectral Estimation of Leaf Water Content for Winter Wheat Based on Grey Relational Analysis(GRA). Jin Xiu-liang,Wang Yan,Tan Chang-wei,Zhu Xin-kai,Guo Wen-shan,Xu Xin-gang,Wang Ji-hua,Li Xin-chuan. 2012

[18]Using new hyperspectral index to estimate leaf chlorophyll content in winter wheat. Xu, Xingang,Song, Xiaoyu,Li, Cunjun,Wang, Jihua. 2012

[19]Estimation of Winter Wheat Biomass Using Visible Spectral and BP Based Artificial Neural Networks. Cui Ri-xian,Liu Ya-dong,Fu Jin-dong. 2015

[20]Remote-Sensing Based Winter Wheat Growth Dynamic Changes and the Spatial-Temporal Relationship with Meteorological Factor. Huang Qing,Zhou Qingbo,Wu Wenbin,Li Dandan. 2014

作者其他论文 更多>>