Response of microRNAs to cold treatment in the young spikes of common wheat

文献类型: 外文期刊

第一作者: Song, Guoqi

作者: Song, Guoqi;Zhang, Rongzhi;Zhang, Shujuan;Li, Yulian;Gao, Jie;Han, Xiaodong;Chen, Mingli;Wang, Jiao;Li, Wei;Li, Genying;Song, Guoqi;Zhang, Rongzhi;Zhang, Shujuan;Li, Yulian;Gao, Jie;Han, Xiaodong;Chen, Mingli;Wang, Jiao;Li, Wei;Li, Genying;Song, Guoqi;Zhang, Rongzhi;Zhang, Shujuan;Li, Yulian;Gao, Jie;Han, Xiaodong;Chen, Mingli;Wang, Jiao;Li, Wei;Li, Genying

作者机构:

关键词: Cold stress;Degradome;Inflorescence development;MicroRNA;Wheat

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2017 年 18 卷

页码:

收录情况: SCI

摘要: Background: MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in biotic and abiotic stresses by regulating their target genes. For common wheat, spring frost damage frequently occurs, especially when low temperature coincides with plants at early floral organ differentiation, which may result in significant yield loss. Up to date, the role of miRNAs in wheat response to frost stress is not well understood. Results: We report here the sequencing of small RNA transcriptomes from the young spikes that were treated with cold stress and the comparative analysis with those of the control. A total of 192 conserved miRNAs from 105 families and nine novel miRNAs were identified. Among them, 34 conserved and five novel miRNAs were differentially expressed between the cold-stressed samples and the controls. The expression patterns of 18 miRNAs were further validated by quantitative real time polymerase chain reaction (qRT-PCR). Moreover, nearly half of the miRNAs were cross inducible by biotic and abiotic stresses when compared with previously published work. Target genes were predicted and validated by degradome sequencing. Gene Ontology (GO) enrichment analysis showed that the target genes of differentially expressed miRNAs were enriched for response to the stimulus, regulation of transcription, and ion transport functions. Since many targets of differentially expressed miRNAs were transcription factors that are associated with floral development such as ARF, SPB (Squamosa Promoter Binding like protein), MADS-box (MCM1, AG, DEFA and SRF), MYB, SPX (SYG1, Pho81 and XPR1), TCP (TEOSINTE BRANCHED, Cycloidea and PCF), and PPR (PentatricoPeptide Repeat) genes, cold-altered miRNA expression may cause abnormal reproductive organ development. Conclusion: Analysis of small RNA transcriptomes and their target genes provide new insight into miRNA regulation in developing wheat inflorescences under cold stress. MiRNAs provide another layer of gene regulation in cold stress response that can be genetically manipulated to reduce yield loss in wheat.

分类号:

  • 相关文献

[1]Genome-Wide Profiling of Small RNAs and Degradome Revealed Conserved Regulations of miRNAs on Auxin-Responsive Genes during Fruit Enlargement in Peaches. Shi, Mengya,Hu, Xiao,Shi, Mengya,Wei, Yu,Liu, Jun,Hou, Xu,Yuan, Xue,Liu, Yueping,Liu, Yueping. 2017

[2]Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Wei, Bo,Zhang, Rongzhi,Li, Aili,Jia, Jizeng,Mao, Long,Wei, Bo,Zhang, Rongzhi,Li, Aili,Jia, Jizeng,Mao, Long,Cai, Tao,Li, Shan,Qi, Yijun,Huo, Naxin,Gu, Yong Q.,Vogel, John.

[3]Identification and characterization of a subset of microRNAs in wheat (Triticum aestivum L.). Su, Chun,Gao, Shiqing,Tang, Yimiao,Zhao, Changping,Li, Lei,Su, Chun,Yang, Xiaozeng,Li, Lei.

[4]Molecular Cloning and Characterization of Four Genes Encoding Ethylene Receptors Associated with Pineapple (Ananas comosus L.) Flowering. Li, Yun-He,Wu, Qing-Song,Liu, Sheng-Hui,Zhang, Hong-Na,Zhang, Zhi,Sun, Guang-Ming,Li, Yun-He,Huang, Xia. 2016

[5]Changes in Sucrose Content and Related Enzyme Activities during Pineapple Inflorescence Development. Lu, Xinhua,Sun, Guangmin,Zhang, Xiumei,Dou, Meian. 2011

[6]Changes in endogenous hormone concentrations during inflorescence induction and development in pineapple (Ananas comosus cv. Smooth Cayenne) by ethephon. Liu Sheng-hui,Zang Xiao-ping,Sun Guang-ming,Liu Sheng-hui,Zang Xiao-ping,Sun Guang-ming. 2011

[7]Characterization and function of Tomato yellow leaf curl virus-derived small RNAs generated in tolerant and susceptible tomato varieties. Bai Miao,Yang Guo-shun,Chen Wen-ting,Lin Run-mao,Ling Jiang,Mao Zhen-chuan,Xie Bing-yang. 2016

[8]Small RNA and Degradome Deep Sequencing Reveals Peanut MicroRNA Roles in Response to Pathogen Infection. Zhao, Chuanzhi,Xia, Han,Zhao, Shuzhen,Hou, Lei,Zhang, Ye,Li, Changsheng,Wang, Xingjun,Zhao, Chuanzhi,Xia, Han,Zhao, Shuzhen,Hou, Lei,Zhang, Ye,Li, Changsheng,Wang, Xingjun,Cao, Tingjie,Zhang, Xinyou,Yang, Yu.

[9]Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. Wang, Yongqiang,Li, Lin,Diao, Xianmin,Tang, Sha,Zhi, Hui,Jia, Guanqing,Diao, Xianmin,Wang, Yongqiang,Liu, Jianguang,Zhang, Hanshuang. 2016

[10]Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize. Zhao, Yongping,Xu, Zhenhua,Mo, Qiaocheng,Zou, Cheng,Li, Wenxue,Xu, Yunbi,Xie, Chuanxiao,Xu, Yunbi,Mo, Qiaocheng,Xu, Zhenhua.

[11]Dual transcriptome analysis reveals insights into the response to Rice black-streaked dwarf virus in maize. Zhou, Yu,Duan, Canxing,Hao, Zhuanfang,Li, Mingshun,Yong, Hongjun,Zhang, Degui,Zhang, Shihuang,Weng, Jianfeng,Li, Xinhai,Zhou, Yu,Xu, Zhennan,Wang, Zhenhua,Chen, Yanping,Meng, Qingchang,Wu, Jirong.

[12]Genomic dissection of small RNAs in wild rice (Oryza rufipogon): lessons for rice domestication. Wang, Yu,Bai, Xuefei,Yan, Chenghai,Gui, Yiejie,Fan, Longjiang,Wang, Yu,Bai, Xuefei,Yan, Chenghai,Gui, Yiejie,Fan, Longjiang,Wei, Xinghua,Guo, Longbiao,Zhu, Qian-Hao.

[13]Analyses of a Glycine max Degradome Library Identify microRNA Targets and MicroRNAs that Trigger Secondary SiRNA Biogenesis. Hu, Zheng,Jiang, Qiyan,Ni, Zhiyong,Xu, Shuo,Zhang, Hui,Chen, Rui. 2013

[14]Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses. Yu, Ying,Yuan, Hongmei,Guan, Fengzhi,Yu, Ying,Wu, Guangwen,Yuan, Hongmei,Cheng, Lili,Zhao, Dongsheng,Huang, Wengong,Zhang, Shuquan,Zhang, Liguo,Guan, Fengzhi,Chen, Hongyu,Zhang, Jian. 2016

[15]Genome-Wide Characterization of Rice Black Streaked Dwarf Virus-Responsive MicroRNAs in Rice Leaves and Roots by Small RNA and Degradome Sequencing. Sun, Zongtao,He, Yuqing,Li, Junmin,Wang, Xu,Chen, Jianping,He, Yuqing.

[16]Phytochrome B Negatively Affects Cold Tolerance by Regulating OsDREB1 Gene Expression through Phytochrome Interacting Factor-Like Protein OsPIL16 in Rice. He, Yanan,Li, Yaping,Cui, Lixin,Xie, Lixia,Zheng, Chongke,Zhou, Guanhua,Zhou, Jinjun,Xie, Xianzhi,Li, Yaping,Cui, Lixin. 2016

[17]Protein Kinase LTRPK1 Influences Cold Adaptation and Microtubule Stability in Rice. Liu, Wei,Fang, Xiaoliang,Wang, Qingguo,Li, Zhen,Yao, Fangyin,Hou, Lei,Ji, Shuxia,Dai, Shaojun,Fang, Xiaoliang. 2013

[18]Genome-Wide Analysis of Gene Expression Provides New Insights into Cold Responses in Thellungiella salsuginea. Wang, Jiangshan,Cui, Feng,Hou, Lei,Zhao, Shuzhen,Xia, Han,Qiu, Jingjing,Li, Tingting,Zhang, Ye,Wang, Xingjun,Zhao, Chuanzhi,Wang, Jiangshan,Zhang, Quan,Qiu, Jingjing,Wang, Xingjun,Zhao, Chuanzhi. 2017

[19]The protective effects of vitamin C on apoptosis, DNA damage and proteome of pufferfish (Takifugu obscurus) under low temperature stress. Cheng, Chang-Hong,Liang, Hai-Yan,Luo, Sheng-Wei,Wang, An-Li,Ye, Chao-Xia. 2018

[20]Proteomics Dissection of Cold Responsive Proteins Based on PEG Fractionation in Arabidopsis. Wang Shang,Xi Jinghui,Li Shanyu,Liu Xiangguo,Hao Dongyun. 2014

作者其他论文 更多>>