A Kelch Motif-Containing Serine/Threonine Protein Phosphatase Determines the Large Grain QTL Trait in Rice

文献类型: 外文期刊

第一作者: Hu, Zejun

作者: Hu, Zejun;Sun, Fan;Xin, Xiaoyun;Qian, Xi;Yang, Jingshui;Luo, Xiaojin;Hu, Zejun;He, Haohua;Wang, Wenxiang;Zhang, Shiyong

作者机构:

关键词: Grain shape;QTL mapping;QTL fine mapping;rice;serine;threonine protein phosphatase

期刊名称:JOURNAL OF INTEGRATIVE PLANT BIOLOGY ( 影响因子:7.061; 五年影响因子:6.002 )

ISSN: 1672-9072

年卷期: 2012 年 54 卷 12 期

页码:

收录情况: SCI

摘要: A thorough understanding of the genetic basis of rice grain traits is critical for the improvement of rice (Oryza sativa L.) varieties. In this study, we generated an F2 population by crossing the large-grain japonica cultivar CW23 with Peiai 64 (PA64), an elite indica small-grain cultivar. Using QTL analysis, 17 QTLs for five grain traits were detected on four different chromosomes. Eight of the QTLs were newly-identified in this study. In particular, qGL3-1, a newly-identified grain length QTL with the highest LOD value and largest phenotypic variation, was fine-mapped to the 17 kb region of chromosome 3. A serine/threonine protein phosphatase gene encoding a repeat domain containing two Kelch motifs was identified as the unique candidate gene corresponding to this QTL. A comparison of PA64 and CW23 sequences revealed a single nucleotide substitution (C?A) at position 1092 in exon 10, resulting in replacement of Asp (D) in PA64 with Glu (E) in CW23 for the 364th amino acid. This variation is located at the D position of the conserved sequence motif AVLDT of the Kelch repeat. Genetic analysis of a near-isogenic line (NIL) for qGL3-1 revealed that the allele qGL3-1 from CW23 has an additive or partly dominant effect, and is suitable for use in molecular marker-assisted selection.

分类号:

  • 相关文献

[1]Natural Variations in SLG7 Regulate Grain Shape in Rice. Miao, Jun,Peng, Xiurong,Leburu, Mamotshewa,Yuan, Fuhai,Gu, Houwen,Gao, Yun,Tao, Yajun,Gong, Zhiyun,Yi, Chuandeng,Gu, Minghong,Yang, Zefeng,Liang, Guohua,Gu, Haiyong,Zhu, Jinyan.

[2]Genome wide association mapping for grain shape traits in indica rice. Feng, Yue,Lu, Qing,Zhang, Mengchen,Xu, Qun,Yang, Yaolong,Wang, Shan,Yuan, Xiaoping,Yu, Hanyong,Wang, Yiping,Wei, Xinghua,Zhai, Rongrong.

[3]Molecular functions of genes related to grain shape in rice. Zheng, Jia,Zhang, Yadong,Wang, Cailin.

[4]Scanning QTLs for Grain Shape using Two Sets of Introgression Lines in Rice. Qiu, Xianjin,Du, Bin,Hu, Hui,Ou, Xiaoxue,Lv, Wenkai,Yang, Longwei,Xing, Danying,Xu, Junying,Li, Zhixin,Zhang, Yunbo,Wang, Xiaoyan,Xu, Jianlong,Xu, Jianlong,Zheng, Tianqing,Qiu, Xianjin. 2017

[5]Brassinosteroids Regulate OFP1, a DLT Interacting Protein, to Modulate Plant Architecture and Grain Morphology in Rice. Xiao, Yunhua,Liu, Dapu,Zhang, Guoxia,Chu, Chengcai,Xiao, Yunhua,Liu, Dapu,Zhang, Guoxia,Chu, Chengcai,Xiao, Yunhua,Liu, Dapu,Zhang, Guoxia,Chu, Chengcai,Tong, Hongning. 2017

[6]Dissecting the Genetic Basis of Extremely Large Grain Shape in Rice Cultivar 'JZ1560'. Ying, Jie-Zheng,Gao, Ji-Ping,Shan, Jun-Xiang,Zhu, Mei-Zhen,Shi, Min,Lin, Hong-Xuan,Ying, Jie-Zheng,Gao, Ji-Ping,Shan, Jun-Xiang,Zhu, Mei-Zhen,Shi, Min,Lin, Hong-Xuan,Ying, Jie-Zheng. 2012

[7]New Candidate Genes Affecting Rice Grain Appearance and Milling Quality Detected by Genome-Wide and Gene-Based Association Analyses. Wang, Xiaoqian,Pang, Yunlong,Wang, Chunchao,Shen, Congcong,Xu, Jianlong,Li, Zhikang,Chen, Kai,Zhu, Yajun,Xu, Jianlong,Ali, Jauhar,Xu, Jianlong,Li, Zhikang. 2017

[8]Identification of QTLs associated with tissue culture response through sequencing-based genotyping of RILs derived from 93-11 x Nipponbare in rice (Oryza sativa). Li, Sujuan,Yan, Song,Zou, Guihua,Tao, Yuezhi,Li, Sujuan,Qian, Qian,Wang, A-hong,Huang, Xuehui,Han, Bin,Qian, Qian.

[9]Identification and pyramiding of QTLs for cold tolerance at the bud bursting and the seedling stages by use of single segment substitution lines in rice (Oryza sativa L.). Yang, Tifeng,Zhang, Shaohong,Zhao, Junliang,Liu, Qing,Huang, Zhanghui,Mao, Xingxue,Dong, Jingfang,Wang, Xiaofei,Liu, Bin,Yang, Tifeng,Zhang, Guiquan,Yang, Tifeng,Zhang, Shaohong,Zhao, Junliang,Liu, Qing,Huang, Zhanghui,Mao, Xingxue,Dong, Jingfang,Wang, Xiaofei,Liu, Bin.

[10]Transmission of important chromosomal regions under selection revealed in rice pedigree breeding programs. Zhou, Jiangbo,Zhu, Lili,He, Guangcun,Zhang, Yuan-Ming,Lu, Haiyan,You, Aiqing.

[11]Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa). Yan, Yong-Feng,Lestari, Puji,Lee, Kyu-Jong,Kim, Moon Young,Lee, Suk-Ha,Lee, Byun-Woo,Yan, Yong-Feng,Lee, Kyu-Jong,Kim, Moon Young,Lee, Suk-Ha,Lee, Byun-Woo,Yan, Yong-Feng,Lestari, Puji.

[12]Identification of QTL Associated with Nitrogen Uptake and Nitrogen Use Efficiency Using High Throughput Genotyped CSSLs in Rice (Oryza sativa L.). Zhou, Yong,Tao, Yajun,Tang, Dongnan,Zhong, Jun,Wang, Yi,Yuan, Qiumei,Yu, Xiaofeng,Zhang, Yan,Wang, Yulong,Liang, Guohua,Dong, Guichun,Wang, Jun. 2017

[13]Integrating Small RNA Sequencing with QTL Mapping for Identification of miRNAs and Their Target Genes Associated with Heat Tolerance at the Flowering Stage in Rice. Liu, Qing,Yang, Tifeng,Zhang, Shaohong,Mao, Xingxue,Zhao, Junliang,Wang, Xiaofei,Dong, Jingfang,Liu, Bin,Liu, Qing,Yang, Tifeng,Zhang, Shaohong,Mao, Xingxue,Zhao, Junliang,Wang, Xiaofei,Dong, Jingfang,Liu, Bin,Yu, Ting. 2017

[14]A novel functional gene associated with cold tolerance at the seedling stage in rice. Zhao, Junliang,Zhang, Shaohong,Dong, Jingfang,Yang, Tifeng,Mao, Xingxue,Liu, Qing,Wang, Xiaofei,Liu, Bin,Zhao, Junliang,Zhang, Shaohong,Dong, Jingfang,Yang, Tifeng,Mao, Xingxue,Liu, Qing,Wang, Xiaofei,Liu, Bin. 2017

[15]Genetic Analysis of Cold Tolerance at Seedling Stage and Heat Tolerance at Anthesis in Rice (Oryza sativa L.). Cheng Li-rui,Uzokwe, Veronica,Meng Li-jun,Wang Yun,Sun Yong,Zhu Ling-hua,Xu Jian-long,Li Zhi-kang,Wang Jun-min,Li Zhi-kang. 2012

[16]Fine Mapping of qTGW3-1, a QTL for 1 000-Grain Weight on Chromosome 3 in Rice. Zhang Qiang,Yao Guo-xin,Hu Guang-long,Chen Chao,Tang Bo,Zhang Hong-liang,Li Zi-chao,Zhang Qiang,Yao Guo-xin. 2012

[17]QTL mapping for rice grain quality: a strategy to detect more QTLs within sub-populations. Xu, Feifei,Huang, Yan,Chen, Yaling,Tong, Chuan,Bao, Jinsong,Xu, Feifei,Huang, Yan,Chen, Yaling,Tong, Chuan,Bao, Jinsong,Sun, Chengxiao.

[18]QTL mapping of grain weight in rice and the validation of the QTL qTGW3.2. Shao-qing, Tang,Gao-neng, Shao,Xiang-jin, Wei,Ming-liang, Chen,Zhong-hua, Sheng,Ju, Luo,Gui-ai, Jiao,Li-hong, Xie,Pei-song, Hu.

[19]Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments. Liu, Xiaolu,Wan, Jianmin,Liu, Xiaolu,Wan, Jianmin,Wan, Xiangyuan,Ma, Xiaodong,Wan, Jianmin,Wan, Xiangyuan.

[20]Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana. Shakeel, Samina N.,Gao, Zhiyong,Amir, Madiha,Chen, Yi-Feng,Rai, Muneeza Iqbal,Ul Haq, Noor,Schaller, G. Eric,Shakeel, Samina N.,Amir, Madiha,Rai, Muneeza Iqbal,Ul Haq, Noor,Chen, Yi-Feng. 2015

作者其他论文 更多>>