p53 and NF kappa B regulate microRNA-34c expression in porcine ovarian granulosa cells

文献类型: 外文期刊

第一作者: Xu Yuan

作者: Xu Yuan;Xiao Guang;Zhang Zhe;Chen Zan-mou;Zhang Hao;Li Jia-qi;Zhang Ai-ling

作者机构:

关键词: porcine granulosa cells;microRNA-34c expression;promoter;p53;NF kappa B

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2016 年 15 卷 8 期

页码:

收录情况: SCI

摘要: MicroRNAs (miRNAs) are endogenous 18-24 nucleotide (nt) non-coding RNAs, some of which have been indicated to play key roles in granulosa cells (GCs) function. However, little is known about how the miRNA gene expression itself is regulated in the GCs. Our previous study showed that miR-34c, identified to be a pro-apoptotic and anti-proliferative factor in many cell types, exerted the same effects in porcine GCs. Here, the transcriptional regulation of miR-34c expression in GCs was further investigated. 5' rapid amplification of cDNA ends (RACE) assay indicated that the pri-miR-34c transcription start site was located in 1 556 bp upstream of pre-miR-34c. With dual-luciferase reporter assay, we confirmed a 69 bp core promoter region (-1 799 bp/-1 730 bp) was indispensable for the transcription of miR-34c. Chromatin immunoprecipitation (ChIP) assay demonstrated that p53, p50, and p65 could bind to the transcription factor binding sites within the 69 bp core promoter region. In addition, deletion of transcripition factor binding sites resulted in obvious change of the miR-34c promoter activity. Finally, using overexpression and knockdown of p53, p50, and p65 strategies, we showed that p53 and p50 could positively regulated miR-34c expression, whereas p65 neletively regulated miR-34c expression in GCs. Our results provide new data about the transcription regulatory mechanism of miRNA genes in GCs.

分类号:

  • 相关文献

[1]Cloning and characterization of the mouse JDP2 gene promoter reveal negative regulation by p53. Xu, Yuanhong,Liu, Zhe,Zhang, Zhongbo,Bi, Shulong,Jin, Chunyuan,Li, Hongjie,Pan, Jianzhi,Yokoyama, Kazunari K..

[2]Endotoxin activates de novo sphingolipid biosynthesis via nuclear factor kappa B-mediated upregulation of Sptlc2. Chang, Zhi-Qiang,Lee, Su-Yeon,Kim, Hye-Jin,Kim, Jung Ran,Kim, Su-Jung,Hong, In-Kyung,Oh, Byung-Chul,Choi, Cheol-Soo,Park, Tae-Sik,Chang, Zhi-Qiang,Goldberg, Ira J.. 2011

[3]Butyric acid regulates progesterone and estradiol secretion via cAMP signaling pathway in porcine granulosa cells. Lu, Naisheng,Li, Mengjiao,Lei, Hulong,Jiang, Xueyuan,Tu, Weilong,Lu, Yang,Xia, Dong.

[4]Molecular mechanisms of enhancing porcine granulosa cell proliferation and function by treatment in vitro with anti-inhibin alpha subunit antibody. Cai, Liuping,Sun, Aidong,Li, Hui,Yu, Jianning,Ying, Shijia,Chen, Zhe,Shi, Zhendan,Tsinkgou, Anastasia. 2015

[5]Effect of BMPRIB gene silencing by siRNA on apoptosis and steroidogenesis of porcine granulosa cells. Zhao, Y. Y.,Li, X. X.,Chen, X.,Yu, P.,Wang, J. J.,Xu, Y. X.,Wang, W.. 2014

[6]Potential Mechanisms Involved in Ceramide-induced Apoptosis in Human Colon Cancer HT29 Cells. Wang, Jing,Du, Yu-Guo,Lv, Xiao-Wen. 2009

[7]Anti-inflammatory activity of cecropin-A2 from Musca domestica. Wei, Rui-Yang,Zhao, Meng-Fei,Wei, Rui-Yang,Bai, Jie,Zhao, Meng-Fei,Xu, Bin,Li, Wen-Jia,Wei, Feng-Xian,Xi, Yan-Yan,Li, Shao-Yu. 2017

[8]PI3K/Akt/p53 pathway inhibits reovirus infection. Zhang, Xiaozhan,Wu, Hongxia,Liu, Chunguo,Tian, Jin,Qu, Liandong.

[9]Type I interferon-mediated immune response against influenza A virus is attenuated in the absence of p53. Zhu, Zixiang,Yang, Yifan,Wei, Jianchao,Shao, Donghua,Shi, Zixue,Li, Beibei,Liu, Ke,Qiu, Yafeng,Ma, Zhiyong,Zhu, Zixiang,Zheng, Haixue.

[10]Molecular characterization and expression pattern of tumor suppressor protein p53 in mandarin fish, Siniperca chuatsi following virus challenge. Guo, Huizhi,Fu, Xiaozhe,Li, Ningqiu,Lin, Qiang,Liu, Lihui,Wu, Shuqin,Guo, Huizhi,Fu, Xiaozhe,Li, Ningqiu,Lin, Qiang,Liu, Lihui,Wu, Shuqin.

[11]The tumor suppressor p53 regulates c-Maf and Prox-1 to control lens differentiation. Liu, F. -Y.,Tang, X. -C.,Wu, K.,Wu, M. -X.,Liu, X. -L.,Yu, M. -B.,Liu, Y.,Li, D. W. -C.,Deng, M.,Chen, P.,Ji, W.,Zhang, X.,Gong, L.,Woodward, Z.,Liu, J.,Zhang, L.,Sun, S.,Liu, J. -P.,Li, D. W. -C.,Deng, M.,Deng, M.,Gong, L.,Liu, J.,Zhang, L.,Sun, S.,Li, D. W. -C..

[12]The p53-Bak apoptotic signaling axis plays an essential role in regulating differentiation of the ocular lens. Deng, M.,Ji, W.,Zhang, X.,Gong, L.,Hu, X.,Hu, W.,Xiao, L.,Li, D. W. -C.,Chen, P.,Liu, F.,Fu, S.,Tang, H.,Fu, Y.,Xiong, Z.,Hui, S.,Hu, X.,Hu, W.,Xiao, L.,Liu, W. -B.,Xiao, Y. -M.,Liu, S. -J.,Liu, Y.,Li, D. W. -C.,Zhang, L.,Sun, S.,Liu, J.,Li, D. W. -C..

[13]Transcription factor C/EBP beta and 17 beta-estradiol promote transcription of the porcine p53 gene. Tao, Hu,Zhang, Xuying,Yang, Jiahao,Zhu, Lihua,Zhou, Jiawei,Wang, Lei,Hua, Lun,Li, Fenge,Tao, Hu,Zhang, Xuying,Yang, Jiahao,Zhu, Lihua,Zhou, Jiawei,Wang, Lei,Hua, Lun,Li, Fenge,Mei, Shuqi,Peng, Xianwen,Wu, Huayu.

[14]p53 codon 72 polymorphism and recurrent pregnancy loss: a meta-analysis. Tang, Wenru,Chan, Ying,Wu, Xiaomin,Luo, Ying,Zhou, Xuhong. 2011

[15]Effects of sulfur dioxide on expressions of p53, bax and bcl-2 in lungs of asthmatic rats. Xie, Jingfang,Li, Ruijin,Meng, Ziqiang,Xie, Jingfang,Fan, Renjun. 2009

[16]Influenza A virus induces p53 accumulation in a biphasic pattern. Shen, Yang,Wang, Xiaodu,Guo, Lin,Qiu, Yafeng,Li, Xiangdong,Yu, Hai,Tong, Guangzhi,Ma, Zhiyong,Xiang, Hua. 2009

[17]The non-structural (NS1) protein of influenza A virus associates with p53 and inhibits p53-mediated transcriptional activity and apoptosis. Wang, Xiaodu,Shen, Yang,Qiu, Yafeng,Shi, Zixue,Shao, Donghua,Chen, Peijun,Tong, Guangzhi,Ma, Zhiyong,Qiu, Yafeng,Shao, Donghua,Ma, Zhiyong. 2010

[18]Integrated High Throughput Analysis Identifies GSK3 as a Crucial Determinant of p53-Mediated Apoptosis in Lung Cancer Cells. Zhang, Yu,Zhu, Chenyang,Lv, Jiawei,Liu, Zhonghua,Zhu, Chenyang,Sun, Bangyao,Liu, Shengwang,Li, Hai. 2017

[19]Cloning and characterization of PHGPx and its synergistic role with p53 in mediating stress in Penaeus monodon. Li, Fuxiang,Wang, Pengfei,Zhao, Chao,Qiu, Lihua,Li, Fuxiang,Li, Fuxiang,Wang, Pengfei,Zhao, Chao,Qiu, Lihua,Qiu, Lihua,Bao, Weiyang. 2017

[20]Identification of human guanylate-binding protein 1 gene (hGBP1) as a direct transcriptional target gene of p53. Zhu, Zixiang,Wei, Jianchao,Shi, Zixue,Yang, Yifan,Shao, Donghua,Li, Beibei,Ma, Zhiyong,Zhu, Zixiang,Wang, Xiaodu.

作者其他论文 更多>>