The Soybean Basic Helix-Loop-Helix Transcription Factor ORG3-Like Enhances Cadmium Tolerance via Increased Iron and Reduced Cadmium Uptake and Transport from Roots to Shoots

文献类型: 外文期刊

第一作者: Xu, Zhaolong

作者: Xu, Zhaolong;Liu, Xiaoqing;He, Xiaolan;Xu, Ling;Huang, Yihong;Shao, Hongbo;Zhang, Dayong;Shao, Hongbo;Tang, Boping;Ma, Hongxiang

作者机构:

关键词: soybean;bHLH transcription factor;GmORG3;cadmium tolerance;gene expression

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Cadmium (Cd) is one of the most dangerous heavy metal pollutants in the environment and is toxic to animal and plant cells. On the other hand, iron (Fe) is an essential element for plant growth and development. The chlorosis of plant leaves under cadmium stress is similar to the typical symptom of iron deficiency. Recently, several Arabidopsis basic/helix-loop-helix (bHLH) transcription factors have been identified that are involved in the interactions between Cd and Fe. In the present study, over-expression the ORG3-like gene GmORG3, a bHLH transcription factor OBP3-responsive gene (ORG), enhanced Cd tolerance and stabilized Fe homeostasis. The domain analysis of GmORG3 showed that the protein contains a conserved 61-residue bHLH domain belonging to subfamily II. Moreover, subcellular localization experiments showed that GmORG3 is a nucleoprotein. GmORG3 was transcribed only in soybean roots and was significantly induced by external Cd stress in soybean plants. Heterologous expression of GmORG3 enhanced Cd tolerance in yeast. Furthermore, the overexpression of GmORG3 in soybean mosaic seedlings using a hairy root system showed that overexpressing plants increased the translocation ratio of Fe but reduced Cd translocation from the roots to shoots. In addition, the ectopic expression of GmORG3 in tobacco reduced phytotoxic effects induced by Cd stress and Fe deficiency, including the blockage of root elongation and decreased chlorophyll content. By integrating all these results, we found that GmORG3 plays an important role in response to Cd stress. The results provide new insights into the molecular mechanisms of Cd tolerance in soybean.

分类号:

  • 相关文献

[1]Molecular characterization of the soybean L-asparaginase gene induced by low temperature stress. Cho, Chang-Woo,Lee, Hye-Jeong,Chung, Eunsook,Kim, Kyoung Mi,Kim, Jee Eun Heo Jung-In,Chung, Jongil,Ma, Youzhi,Fukui, Kiichi,Lee, Dae-Won,Kim, Doh-Hoon,Chung, Young-Soo,Lee, Jai-Heou. 2007

[2]Evolution and expression analysis of the soybean glutamate decarboxylase gene family. Hyun, Tae Kyung,Eom, Seung Hee,Han, Xiao,Kim, Ju-Sung,Kim, Ju-Sung.

[3]Genome-Wide Identification and Classification of Soybean C2H2 Zinc Finger Proteins and Their Expression Analysis in Legume-Rhizobium Symbiosis. Yuan, Songli,Li, Rong,Zhang, Chanjuan,Chen, Limiao,Hao, Qingnan,Zhang, Xiaojuan,Chen, Haifeng,Shan, Zhihui,Yang, Zhonglu,Chen, Shuilian,Qiu, Dezhen,Zhou, Xinan,Yuan, Songli,Li, Rong,Zhang, Chanjuan,Chen, Limiao,Hao, Qingnan,Zhang, Xiaojuan,Chen, Haifeng,Shan, Zhihui,Yang, Zhonglu,Chen, Shuilian,Qiu, Dezhen,Zhou, Xinan,Li, Xiangyong,Wang, Lei,Ke, Danxia. 2018

[4]Genome-wide expression analysis in a dwarf soybean mutant. Zhang, Feng,Huang, Xianzhong,Zhang, Feng,Shen, Yanting,Li, Congcong,Li, Qing,Tian, Zhixi,Shen, Yanting,Li, Congcong,Li, Qing,Sun, Shi,Guo, Jianqiu,Wu, Cunxiang,Han, Tianfu,Nian, Hai.

[5]Search for Nodulation and Nodule Development-Related Cystatin Genes in the Genome of Soybean (Glycine max). Yuan, Songli,Li, Rong,Chen, Haifeng,Zhang, Chanjuan,Chen, Limiao,Hao, Qingnan,Shan, Zhihui,Zhang, Xiaojuan,Chen, Shuilian,Yang, Zhonglu,Qiu, Dezhen,Zhou, Xinan,Yuan, Songli,Li, Rong,Chen, Haifeng,Zhang, Chanjuan,Chen, Limiao,Hao, Qingnan,Shan, Zhihui,Zhang, Xiaojuan,Chen, Shuilian,Yang, Zhonglu,Qiu, Dezhen,Zhou, Xinan,Wang, Lei. 2016

[6]Comparative study of four rice cultivars with different levels of cadmium tolerance. Yuan, Shu,Wang, Xiao,Xu, Fei,Zhu, Feng,Zhang, Da-Wei,Du, Jun-Bo,Lin, Hong-Hui,Tu, Shi-Hua,Feng, Wen-Qiang,Lin, Hong-Hui.

[7]Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis. Shi, Yuan-Zhi,Shi, Yuan-Zhi,Shi, Yuan-Zhi,Wan, Jiang-Xue,Zheng, Shao-Jian,Zhu, Xiao-Fang,Li, Gui-Xin. 2015

[8]Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum). Wang, Jinyan,Hu, Zhongze,Zhao, Tongmin,Yang, Yuwen,Chen, Tianzi,Yang, Mali,Yu, Wengui,Zhang, Baolong. 2015

[9]Cloning, molecular evolution and functional characterization of ZmbHLH16, the maize ortholog of OsTIP2 (OsbHLH142). Liu, Yongming,Wei, Gui,Sun, Yonghao,Lu, Yanli,Lan, Hai,Li, Chuan,Zhang, Suzhi,Cao, Moju,Liu, Yongming,Wei, Gui,Lu, Yanli,Lan, Hai,Li, Chuan,Zhang, Suzhi,Cao, Moju,Li, Jia,Sun, Yonghao. 2017

[10]The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants. Zhai, Yiqian,Zhang, Lichao,Xia, Chuan,Fu, Silu,Zhao, Guangyao,Jia, Jizeng,Kong, Xiuying.

[11]Genetic diversity and aggressiveness of Fusarium species isolated from soybean in Alberta, Canada. Zhou, Qixing,Chang, Kan-Fa,Hwang, Sheau-Fang,Fu, Heting,Turnbull, George D.,Li, Nana,Strelkov, Stephen E.,Conner, Robert L.,McLaren, Debra L.,Harding, Michael W.. 2018

[12]High-Density Genetic Mapping Identifies New Major Loci for Tolerance to Low-Phosphorus Stress in Soybean. Zhang, Dan,Li, Hongyan,Chu, Shanshan,Lv, Haiyan,Wang, Jinshe,Zhang, Hengyou,Hu, Zhenbin,Yu, Deyue. 2016

[13]Geographical distribution of GmTfl1 alleles in Chinese soybean varieties. Liu, Guifeng,Zhao, Lin,Qiu, Lijuan,Liu, Ying,Chang, Ruzhen,Guan, Rongxia,Qiu, Lijuan,Averitt, Benjamin J.,Zhang, Bo,Ma, Yansong,Luan, Xiaoyan. 2015

[14]Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. Li, Pan-Song,Chai, Shou-Cheng,Li, Pan-Song,Yu, Tai-Fei,He, Guan-Hua,Chen, Ming,Zhou, Yong-Bin,Xu, Zhao-Shi,Ma, You-Zhi. 2014

[15]Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. Song, Zhang-yue,Tian, Jing-luan,Fu, Wei-zhe,Li, Lin,Lu, Ling-hong,Zhou, Lian,Shou, Hui-xia,Shan, Zhi-hui,Tang, Gui-xiang. 2013

[16]A CIB1-LIKE transcription factor GmCIL10 from soybean positively regulates plant flowering. Yang DeGuang,Zhao Wang,Meng YingYing,Li HongYu,Liu Bin. 2015

[17]Stability of growth periods traits for soybean cultivars across multiple locations. Liu Zhang-xiong,Chang Ru-zhen,Qiu Li-juan,Wang Xiao-bo,Yang Chun-yan,Xu Ran,Zhang Li-feng,Lu Wei-guo,Wang Qian,Wei Su-hong,Yang Chun-ming,Wang Hui-cai,Wang Rui-zhen,Zhou Rong,Chen Huai-zhu. 2016

[18]Purification and characterization of beta-glucosidase from newly isolated Aspergillus sp MT-0204. Qi, Bin,Liu, Xianjin,Qi, Bin,Wang, Limei. 2009

[19]Aspects of soybean insect resistance breeding in China. Wang, S. 2004

[20]QTL Mapping of Isoflavone, Oil and Protein Contents in Soybean (Glycine max L. Merr.). Liang Hui-zhen,Yu Yong-liang,Wang Shu-feng,Lian Yun,Wang Ting-feng,Wei Yan-li,Gong Peng-tao,Fang Xuan-jun,Liu Xue-yi,Zhang Meng-chen. 2010

作者其他论文 更多>>