Functional Marker Development and Effect Analysis of Grain Size Gene GW2 in Extreme Grain Size Germplasm in Rice

文献类型: 外文期刊

第一作者: Zhang Ya-dong

作者: Zhang Ya-dong;Zheng Jia;Liang Yan-li;Zhao Chun-fang;Chen Tao;Zhao Qing-yong;Zhu Zhen;Zhou Li-hui;Yao Shu;Zhao Ling;Yu Xing;Wang Cai-lin

作者机构:

关键词: rice;grain size;GW2 gene;derived cleaved amplified polymorphic sequence;phenotype

期刊名称:RICE SCIENCE ( 影响因子:3.333; 五年影响因子:4.226 )

ISSN: 1672-6308

年卷期: 2015 年 22 卷 2 期

页码:

收录情况: SCI

摘要: GW2 is an important gene that regulates grain width and weight. We used cDNA clone to obtain the sequences of GW2 from large-and small-grained rice varieties, TD70 and Kasalath, respectively. Then, we developed a dCAPS (derived cleaved amplified polymorphic sequence) marker on the basis of the sequence difference between functional and nonfunctional GW2 genes to analyze the genotypes and phenotypes of recombinant inbred lines. Results showed that the sequence of GW2(TD70) had a single nucleotide deletion at site 316 that generates a termination codon. This codon terminated the GW2 protein in advance. By contrast, the sequence of GW2(Kasalath) encoded an intact protein. A novel dCAPS marker was designed in accordance with a base A deletion at site 316 of the sequence. After the PCR product was digested by ApoI, TD70 showed 21 and 30 bp fragments, and Kasalath showed a 51 bp fragment. Up to 82 lines contained GW2(TD70), and 158 lines contained GW2(Kasalath). The lines that contained TD70 alleles displayed substantial increases in width and 1000-grain weight. This result suggested that GW2 played a critical role in rice breeding.

分类号:

  • 相关文献

[1]Genotypic and phenotypic characterization of genetic differentiation and diversity in the USDA rice mini-core collection. Jia, Limeng,Wu, Dianxing,Li, Xiaobai,Li, Xiaobai,Agrama, Hesham,Jia, Limeng,Moldenhauer, Karen,Li, Xiaobai,Yan, Wengui,Jia, Limeng,Jia, Melissa,Jackson, Aaron,McClung, Anna,Hu, Biaolin.

[2]Development of Chromosome Segment Substitution Lines Derived from Backcross between Two Sequenced Rice Cultivars, Indica Recipient 93-11 and Japonica Donor Nipponbare. Zhu, Wenyin,Lin, Jing,Yang, Dewei,Zhao, Ling,Zhang, Yadong,Zhu, Zhen,Chen, Tao,Wang, Cailin.

[3]A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice. Hu, Jiang,Wang, Yuexing,Fang, Yunxia,Xu, Jie,Yu, Haiping,Shi, Zhenyuan,Pan, Jiangjie,Zhang, Dong,Zhu, Li,Dong, Guojun,Guo, Longbiao,Zeng, Dali,Zhang, Guangheng,Xie, Lihong,Qian, Qian,Zeng, Longjun,Kang, Shujing,Xiong, Guosheng,Qian, Qian,Li, Jiayang,Li, Jiayang. 2015

[4]SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Duan, Penggen,Xu, Ran,Zhang, Baolan,Li, Yunhai,Duan, Penggen,Rao, Yuchun,Zeng, Dali,Yang, Yaolong,Dong, Guojun,Qian, Qian,Rao, Yuchun. 2014

[5]Identification of QTLs for grain size and characterization of the beneficial alleles of grain size genes in large grain rice variety BL129. Gao Xuan,Luo Yue-hua,Zhu Xu-dong,Gao Xuan,Fang Na,Duan Peng-gen,Wu Ying-bao,Li Yun-hai.

[6]Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice. Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Yu, Si-Bin,Zhang, Hong-Wei,Yu, Si-Bin. 2016

[7]SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. Feng, Zhiming,Wang, Chunming,Zhang, Long,Zhang, Shengzhong,Zhang, Huan,Yang, Chunyan,Hu, Jinlong,You, Xiaoman,Liu, Xi,Yang, Xiaoming,Jiang, Ling,Wan, Jianmin,Wu, Chuanyin,Chen, Jun,Guo, Xiuping,Zhang, Xin,Wu, Fuqing,Wan, Jianmin,Roh, Jeehee,Kim, Seong-Ki,Terzaghi, William.

[8]08SG2/OsBAK1 regulates grain size and number, and functions differently in Indica and Japonica backgrounds in rice. Yuan, Hua,Fan, Shijun,Huang, Juan,Zhan, Shijie,Wang, Shifu,Gao, Peng,Chen, Weilan,Tu, Bin,Ma, Bingtian,Wang, Yuping,Qin, Peng,Li, Shigui,Yuan, Hua,Fan, Shijun,Zhan, Shijie,Wang, Shifu,Gao, Peng,Chen, Weilan,Tu, Bin,Ma, Bingtian,Wang, Yuping,Qin, Peng,Li, Shigui,Huang, Juan. 2017

[9]Haplotypes of qGL3 and their roles in grain size regulation with GS3 alleles in rice. Zhang, Y. D.,Zhu, Z.,Zhao, Q. Y.,Chen, T.,Yao, S.,Zhou, L. H.,Zhao, L.,Zhao, C. F.,Wang, C. L.,Zhang, Y. D.,Zhao, Q. Y.,Wang, C. L.. 2016

[10]GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Zhou, Yong,Tao, Yajun,Miao, Jun,Liu, Jun,Liu, Yanhua,Yi, Chuandeng,Yang, Zefeng,Gong, Zhiyun,Liang, Guohua,Zhu, Jinyan. 2017

[11]Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice. Duan, Penggen,Xu, Jinsong,Zhang, Baolan,Zhang, Guozheng,Huang, Ke,Huang, Luojiang,Xu, Ran,Li, Yunhai,Zeng, Dali,Qian, Qian,Geng, Mufan,Ge, Song,Zhang, Guozheng,Huang, Ke,Huang, Luojiang. 2017

[12]Identification of primary trisomics and other aneuploids in foxtail millet. Wang, R,Gao, J,Liang, GH. 1999

[13]TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Mao, Xinguo,Zhang, Hongying,Qian, Xueya,Li, Ang,Zhao, Guangyao,Jing, Ruilian.

[14]Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Mao, Xinguo,Jia, Dongsheng,Li, Ang,Zhang, Hongying,Tian, Shanjun,Jia, Jizeng,Jing, Ruilian,Mao, Xinguo,Jia, Dongsheng,Li, Ang,Zhang, Hongying,Tian, Shanjun,Jia, Jizeng,Jing, Ruilian,Jia, Dongsheng,Zhang, Hongying,Zhang, Xiaoke.

[15]QTL mapping for quantities of protein fractions in bread wheat (Triticum aestivum L.). He, Zhonghu,Yan, Jun,Zhang, Yong,Tang, Jianwei,Zhang, Yelun,Yan, Jun,Xiao, Yonggui,Zhang, Yan,Xia, Xianchun,He, Zhonghu.

[16]Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice. Tang, Jiuyou,Wang, Yiqin,Liu, Linchuan,Xu, Bo,Li, Feng,Fang, Jun,Chu, Chengcai,Tang, Jiuyou,Wang, Yiqin,Liu, Linchuan,Xu, Bo,Li, Feng,Fang, Jun,Chu, Chengcai,Tang, Jiuyou,Liu, Linchuan,Xu, Bo,Li, Feng,Zhu, Xudong.

[17]Genetic diversity and construction of core collection in Chinese wheat genetic resources. Hao ChenYang,Dong YuChen,Wang LanFen,You GuangXia,Zhang HongNa,Ge HongMei,Jia JiZeng,Zhang XueYong.

[18]Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Hao, Zhuanfang,Li, Xinhai,Liu, Xiulin,Xie, Chuanxiao,Li, Mingshun,Zhang, Degui,Zhang, Shihuang,Hao, Zhuanfang.

[19]Discovery and transmission of functional QTL in the pedigree of an elite soybean cultivar Suinong14. Yang, R. Q.,Qin, J.,Li, Y. H.,Guan, R. X.,Chang, R. Z.,Qiu, L. J.,Qin, J.,Jiang, C. X.,Li, W. B..

[20]Independent Losses of Function in a Polyphenol Oxidase in Rice: Differentiation in Grain Discoloration between Subspecies and the Role of Positive Selection under Domestication. Tang, Tian,Wu, Chung-I,Shi, Suhua,Yu, Yanchun,Wang, Yonghong,Li, Jiayang,Yu, Yanchun,Wang, Yonghong,Li, Jiayang,Qian, Qian,Yan, Meixian,Zeng, Dali,Han, Bin,Han, Bin,Wu, Chung-I,Wu, Chung-I.

作者其他论文 更多>>