Integration of cropping practices and herbicides improves weed management in dry bean (Phaseolus vulgaris)

文献类型: 外文期刊

第一作者: Blackshaw, RE

作者: Blackshaw, RE;Molnar, LJ;Muendel, HH;Saindon, G;Li, XJ

作者机构:

关键词: integrated weed management;plant density;row spacing;ECHCG;POLCO;POLSC;SETVI;SOLSA

期刊名称:WEED TECHNOLOGY ( 影响因子:1.884; 五年影响因子:1.917 )

ISSN: 0890-037X

年卷期: 2000 年 14 卷 2 期

页码:

收录情况: SCI

摘要: A field study was conducted to determine the combined effects of row spacing, plant density, and herbicides on weed management and dry bean (Phaseolus vulgaris) yield. In weed-free dry bean, a reduction in row spacing from 69 to 23 cm increased yield by 19% and an increase in density from 20 to 50 plants/m(2) increased yield by 17%. In the presence of weeds, narrow rows and high plant densities increased dry bean yield, but without herbicides, yields remained low. However, when combined with herbicides, narrow-row and high-density production practices resulted in better weed control and higher dry bean yield than that attained in a wide-row and low-density production system. Herbicide combinations, often at reduced rates, controlled weeds as well or better than the full rate of any individual herbicide. Ethalfluralin applied preplant incorporated followed by reduced rates of imazethapyr or bentazon postemergence (POST) consistently controlled weeds. Imazamox exhibited the potential to provide a total POST weed control option in dry bean production. Information gained in this study will be used to develop improved weed management programs appropriate for either wide- or narrow-row dry bean production systems.

分类号:

  • 相关文献

[1]Identification of plant configurations maximizing radiation capture in relay strip cotton using a functional-structural plant model. Lili Mao,Lizhen Zhang,Jochem B. Evers,Michael Henke,Wopke van der Werf,Shaodong Liu,Siping Zhang,Xinhua Zhao,Baomin Wang,Zhaohu Li.

[2]Tillage, fertiliser and glyphosate timing effects on foxtail barley (Hordeum jubatum) management in wheat. Blackshaw, RE,Semach, G,Li, X,O'Donovan, JT,Harker, KN. 2000

[3]Allelopathic effects of winter wheat residues on germination and growth of crabgrass (Digitaria ciliaris) and corn yield. Wang, GQ,Li, BH,Blackshaw, RE.

[4]Smooth bromegrass seed yield and yield component responses to seeding rates and row spacings in two climates. Han, Yunhua,Wang, Yanrong,Mao, Peisheng,Wang, Xianguo,Hu, Tianming,Shen, Zhongbao,Zhang, Yongliang. 2016

[5]EFFECT OF SPATIAL ARRANGEMENT AND DENSITY ON WEED INFESTATION AND YIELD OF MAIZE (ZEA MAYS L.). Huang, Zhaofeng,Huang, Hongjun,Wei, Shouhui,Zhang, Chaoxian,Hashim, Saima,Marwat, Khan Bahadar. 2016

[6]Effects of Soil Salinity and Plant Density on Yield and Leaf Senescence of Field-Grown Cotton. Zhang, H. J.,Dong, H. Z.,Li, W. J.,Zhang, D. M.,Zhang, H. J.. 2012

[7]Effects of genotypes and plant density on yield, yield components and photosynthesis in Bt transgenic cotton. Dong, HZ,Li, WJ,Tang, W,Li, ZH,Zhang, DM. 2006

[8]Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Dong, HZ,Li, WJ,Tang, W,Li, ZH,Zhang, DM,Niu, YH. 2006

[9]Effects of planting system, plant density and flower removal on yield and quality of hybrid seed in cotton. Dong, HZ,Zhang, DM,Tang, W,Li, WJ,Li, ZH. 2005

[10]Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Dong, Hezhong,Li, Weijiang,Eneji, A. Egrinya,Zhang, Dongmei,Eneji, A. Egrinya. 2012

[11]Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Dong, Hezhong,Kong, Xiangqiang,Li, Weijiang,Tang, Wei,Zhang, Dongmei. 2010

[12]Effects of Irrigation and Plant Density on Cotton Within-Boll Yield Components. Lu Feng,Vinicius B. Bufon,Cory I. Mills,Eric Hequet,James P. Bordovsky,;Wayne Keeling,Randy Boman,Craig W. Bednarz.

[13]Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.). Zhang, Shujie,Liao, Xing,Zhang, Chunlei,Xu, Huajun. 2012

[14]Response of grain yield to plant density and nitrogen rate in spring maize hybrids released from 1970 to 2010 in Northeast China. Qian, Chunrong,Yu, Yang,Gong, Xiujie,Jiang, Yubo,Zhao, Yang,Yang, Zhongliang,Hao, Yubo,Li, Liang,Song, Zhenwei,Zhang, Weijian. 2016

[15]Monitoring the Plant Density of Cotton with Remotely Sensed Data. Bai, Junhua,Li, Shaokun,Bai, Junhua,Li, Jing,Bai, Junhua. 2011

[16]NITROGEN DOSES AND PLANT DENSITY AFFECT PHENOLOGY AND YIELD OF SWEET CORN. Khan, Zafar Hayat,Khalil, Shad Khan,Khan, Zafar Hayat,Iqbal, Amjad,Shah, Farooq,Iqbal, Amjad,Ullah, Ikram,Ali, Muhammad,Shah, Tariq,Wu, Wei. 2017

[17]Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton. Zhang, Dongmei,Luo, Zhen,Li, Weijiang,WeiTang,Dong, Hezhong,Liu, Suhua.

[18]Competitive yield and economic benefits of cotton achieved through a combination of extensive pruning and a reduced nitrogen rate at high plant density. Dai, Jianlong,Li, Weijiang,Zhang, Dongmei,Tang, Wei,Li, Zhenhuai,Lu, Hequan,Kong, Xiangqiang,Luo, Zhen,Xu, Shizhen,Xin, Chengsong,Dong, Hezhong.

[19]Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Dai, Jianlong,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Li, Zhenhuai,Lu, Hequan,Eneji, A. Egrinya,Dong, Hezhong.

[20]Changes in Plant-to-Plant Variability among Maize Individuals and their Relationships with Plant Density and Grain Yield. Sun, Y. L.,Zhang, G. Q.,Li, S. K.,Xie, R. Z.,Wang, K. R.,Hou, P.,Ming, B.,Guo, Y. Q.,Sun, Y. L.,Zhang, G. Q.,Li, S. K.,Li, J.,Zhao, R. L..

作者其他论文 更多>>