The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes

文献类型: 外文期刊

第一作者: Wei, Xiaochun

作者: Wei, Xiaochun;Yao, Qiuju;Yuan, Yuxiang;Zhao, Yanyan;Zhang, Qiang;Wang, Zhiyong;Jiang, Wusheng;Zhang, Xiaowei;Zhang, Xiaohui;Li, Xixiang;Wei, Fang

作者机构:

关键词: miRNAs;Brassica rapa ssp pekinensis;Ogura-CMS;bud;pollen;deep sequencing

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2015 年 6 卷

页码:

收录情况: SCI

摘要: Chinese cabbage (Brassica rapa ssp pekinensis) is one of the most important vegetables in Asia and is cultivated across the world. Ogura-type cytoplasmic male sterility (Ogura-CMS) has been widely used in the hybrid breeding industry for Chinese cabbage and many other cruciferous vegetables. Although, the cause of Ogura-CMS has been localized to the orf138 locus in the mitochondrial genome, however, the mechanism by which nuclear genes respond to the mutation of the mitochondrial orf138 locus is unclear. In this study, a series of whole genome small RNA, degradome and transcriptome analyses were performed on both Ogura-CMS and its maintainer Chinese cabbage buds using deep sequencing technology. A total of 289 known miRNAs derived from 69 families (including 23 new families first reported in B. rapa) and 426 novel miRNAs were identified. Among these novel miRNAs, both 3-p and 5-p miRNAs were detected on the hairpin arms of 138 precursors. Ten known and 49 novel miRNAs were down-regulated, while one known and 27 novel miRNAs were up-regulated in Ogura-CMS buds compared to the fertile plants. Using degradome analysis, a total of 376 mRNAs were identified as targets of 30 known miRNA families and 100 novel miRNAs. A large fraction of the targets were annotated as reproductive development related. Our transcriptome profiling revealed that the expression of the targets was finely tuned by the miRNAs. Two novel miRNAs were identified that were specifically highly expressed in Ogura-CMS buds and sufficiently suppressed two pollen development essential genes: sucrose transporter SUC1 and H-F-ATPase 6. These findings provide clues for the contribution of a potential miRNA regulatory network to bud development and pollen engenderation. This study contributes new insights to the communication between the mitochondria and chromosome and takes one step toward filling the gap in the regulatory network from the orf138 locus to pollen abortion in Ogura-CMS plants from a miRNA perspective.

分类号:

  • 相关文献

[1]Identification and Characterization of MicroRNAs in the Liver of Blunt Snout Bream (Megalobrama amblycephala) Infected by Aeromonas hydrophila. Cui, Lei,Wei, Wei,Wang, Weimin,Liu, Hong,Hu, Hongtao,Wei, Wei,Liu, Hong. 2016

[2]Identification of microRNAs involved in drought stress responses in early-maturing cotton by high-throughput sequencing. Dong, Zhanghui,Zhu, Qingzhu,Zhao, Lifen,Sui, Shuxiang,Li, Zengshu,Zhang, Yanli,Wang, Hu,Tian, Dongliang,Zhao, Yankun,Zhang, Jianhong. 2018

[3]Global analysis of gene expression in flower buds of Ms-cd1 Brassica oleracea conferring male sterility by using an Arabidopsis microarray. Bonnema, Guusje,Kang, Jungen,Zhang, Guoyu,Fang, Zhiyuan,Wang, Xiaowu.

[4]Genome-wide identification and characterization of aquaporin genes (AQPs) in Chinese cabbage (Brassica rapa ssp pekinensis). Tao, Peng,Zhong, Xinmin,Li, Biyuan,Wang, Wuhong,Yue, Zhichen,Lei, Juanli,Huang, Xiaoyun,Guo, Weiling,Huang, Xiaoyun.

[5]Construction of a sequence-based bin map and mapping of QTLs for downy mildew resistance at four developmental stages in Chinese cabbage (Brassica rapa L. ssp pekinensis). Yu, Shuancang,Su, Tongbing,Zhi, Shenghua,Zhang, Fenglan,Wang, Weihong,Zhang, Deshuang,Zhao, Xiuyun,Yu, Yangjun,Yu, Shuancang,Su, Tongbing,Zhi, Shenghua,Zhang, Fenglan,Wang, Weihong,Zhang, Deshuang,Zhao, Xiuyun,Yu, Yangjun,Yu, Shuancang,Su, Tongbing,Zhi, Shenghua,Zhang, Fenglan,Wang, Weihong,Zhang, Deshuang,Zhao, Xiuyun,Yu, Yangjun.

[6]Hybrid Purity Testing of Brassica rapa Using SSR Marker Technology. Li, Li,Liu, Ling,Wu, Ping,Xu, Xiulan,Li, Li,Liu, Ling,Zhang, Deshuang,Wu, Ping,Zhang, Fenglan,Xu, Xiulan,Li, Li,Liu, Ling,Zhang, Deshuang,Wu, Ping,Zhang, Fenglan,Xu, Xiulan,Li, Li,Liu, Ling,Zhang, Deshuang,Wu, Ping,Zhang, Fenglan,Xu, Xiulan,Li, Li,Liu, Ling,Zhang, Deshuang,Wu, Ping,Zhang, Fenglan,Xu, Xiulan.

[7]Identification and Functional Analysis of microRNAs Involved in the Anther Development in Cotton Genic Male Sterile Line Yu98-8A. Xiaojie Yang,Yuanming Zhao,Deyi Xie,Yao Sun,Xunlu Zhu,Nardana Esmaeili,Zuoren Yang,Ye Wang,Guo Yin,Shuping Lv,Lihong Nie,Zhongjie Tang,Fu’an Zhao,Wu Li,Neelam Mishra,Li Sun,Wei Zhu,Weiping Fang. 2016

[8]Comprehensive miRNA expression profiles in the ilea of Lawsonia intracellularis-infected pigs. Li, Hongyi,Zhang, Mao,Zheng, Enqin. 2017

[9]Identification of common carp (Cyprinus carpio) microRNAs and microRNA-related SNPs. Zhu, Ya-Ping,Xue, Wei,Wang, Jin-Tu,Wan, Yu-Mei,Xu, Peng,Zhang, Yan,Li, Jiong-Tang,Sun, Xiao-Wen,Zhu, Ya-Ping,Xue, Wei,Wang, Jin-Tu,Wang, Shao-Lin. 2012

[10]Differential expression of microRNAs in avian leukosis virus subgroup J-induced tumors. Wang, Qi,Gao, Yulong,Ji, Xiaolin,Qi, Xiaole,Qin, Liting,Gao, Honglei,Wang, Yongqiang,Wang, Xiaomei. 2013

[11]Analyses of a Glycine max Degradome Library Identify microRNA Targets and MicroRNAs that Trigger Secondary SiRNA Biogenesis. Hu, Zheng,Jiang, Qiyan,Ni, Zhiyong,Xu, Shuo,Zhang, Hui,Chen, Rui. 2013

[12]Comparison of the differential expression miRNAs in Wistar rats before and 10 days after S.japonicum infection. Han, Hongxiao,Peng, Jinbiao,Hong, Yang,Zhang, Min,Han, Yanhui,Fu, Zhiqiang,Shi, Yaojun,Lin, Jiaojiao,Han, Hongxiao,Xu, Jinjun,Tao, Jianping,Peng, Jinbiao. 2013

[13]Comparison of skeletal muscle miRNA and mRNA profiles among three pig breeds. Hou, Xinhua,Yang, Yalan,Zhu, Shiyun,Hua, Chaoju,Zhou, Rong,Mu, Yulian,Tang, Zhonglin,Li, Kui,Yang, Yalan,Tang, Zhonglin.

[14]Genome-Wide Characterization of Rice Black Streaked Dwarf Virus-Responsive MicroRNAs in Rice Leaves and Roots by Small RNA and Degradome Sequencing. Sun, Zongtao,He, Yuqing,Li, Junmin,Wang, Xu,Chen, Jianping,He, Yuqing.

[15]THE REGULATION OF SILKWORM Fibroin L CHAIN PRODUCTION BY miRNA-965 AND miRNA-1926 IN INSECT CELLS. Huang, Yong,Song, Fei,Wang, Xin,Shen, Xing Jia,Huang, Yong,Zou, Quan.

[16]System analysis of microRNAs in the development and aluminium stress responses of the maize root system. Kong, Xiangpei,Zhang, Maolin,Li, Cuiling,Ding, Zhaojun,Xu, Xiangbo,Li, Xiaoming.

[17]Small RNA changes in synthetic Brassica napus. Fu, Ying,Yu, Huasheng,Zhang, Dongqing,Xiao, Meili,Yin, Jiaming,Li, Jiana,Mason, Annaliese S.,Xiao, Meili,Fu, Donghui.

[18]Physiological and transcriptional responses of two contrasting Populus clones to nitrogen stress. Wang, Xiaoli,Wang, Xiaoli,Li, Xiaodong,Zhang, Sheng,Korpelainen, Helena,Li, Chunyang.

[19]Segregation analysis of microsatellite (SSR) markers in sugarcane polyploids. Zhou, H.,Pan, Y. -B.,Zhu, J. R.,Lu, X.,Zhu, J. R.,Cai, Q.,Zhou, H.,Li, Y. -R.,Zhou, H.,Li, Y. -R.,Chen, C. Y.,Chen, P. H.,Chen, R. K.,Chen, P. H.,Chen, R. K.. 2015

[20]Cryopreservation of Citrus anthers in the National Crop Genebank of China. Zhang, Jin-Mei,Lu, Xin-Xiong,Xin, Xia,Yin, Guang-Kun,He, Juan-Juan,Huang, Bin,Chen, Xiao-Ling,Huang, Bin,Jiang, Dong. 2017

作者其他论文 更多>>