Identification of potential genes that contributed to the variation in the taxoid contents between two Taxus species (Taxus media and Taxus mairei)

文献类型: 外文期刊

第一作者: Yu, Chunna

作者: Yu, Chunna;Guo, Hong;Zhang, Yangyang;Song, Yaobin;Pi, Erxu;Dong, Ming;Wang, Huizhong;Shen, Chenjia;Yu, Chunna;Guo, Hong;Wang, Huizhong;Shen, Chenjia;Song, Yaobin;Dong, Ming;Yu, Chenliang;Zhang, Lei;Zheng, Bingsong

作者机构:

关键词: HPLC-MS/MS;taxoid biosynthetic pathway;Taxol;Taxus;transcriptome

期刊名称:TREE PHYSIOLOGY ( 影响因子:4.196; 五年影响因子:4.727 )

ISSN: 0829-318X

年卷期: 2017 年 37 卷 12 期

页码:

收录情况: SCI

摘要: Taxol is currently a valuable anticancer drug; however, the accumulated mixture of taxoids can vary greatly among Taxus species. So far, there is very little genomic information for the genus Taxus, except for Taxus baccata. Transcriptome analysis is a powerful approach to explore the different regulatory mechanisms underlying the taxoid biosynthesis pathway in Taxus species. First, we quantified the variation in the taxoid contents between Taxus media and Taxus mairei. The contents of paclitaxel and 10-deacetylpaclitaxel in T. media are higher than that in T. mairei. Then, the transcriptome profiles of T. media and T. mairei were analyzed to investigate the altered expressions. A total of 20,704 significantly differentially expressed genes (DEGs), including 9865 unigenes predominantly expressed in T. media and 10,839 unigenes predominantly expressed in T. mairei, were identified. In total, 120 jasmonic acid-related DEGs were analyzed, suggesting variations in 'response to JA stimulus' and 'JA biosynthetic process' pathways between T. media and T. mairei. Furthermore, a number of genes related to the precursor supply, taxane skeleton formation and hydroxylation, and C13-side chain assembly were also identified. The differential expression of the candidate genes involved in taxoid biosynthetic pathways may explain the variation in the taxoid contents between T. media and T. mairei.

分类号:

  • 相关文献

[1]Comparative proteomic analyses of two Taxus species (Taxus X media and Taxus mairei) reveals variations in the metabolisms associated with paclitaxel and other metabolites. Juan Hao,Shen, Chenjia,Hong Guo,Xinai Shi,Ye Wang,Qinghua Wan,Yao-Bin Song,Lei Zhang,Ming Dong,Chenjia Shen. 2017

[2]A protocol of homozygous haploid callus induction from endosperm of Taxus chinensis Rehd. var. mairei. Li, Yan-Lin,Huang, San-Wen,Xiong, Xing-Yao,Li, Yan-Lin,Huang, San-Wen,Bu, Feng-Jiao,Lin, Tao,Zhang, Zhong-Hua,Xiong, Xing-Yao,Zhang, Jia-Yin. 2016

[3]Sequence-related amplified polymorphism (SRAP) marker as a new method for identification of endophytic fungi from Taxus. Ren, Na,Liu, Jiajia,Yang, Dongliang,Hong, Juan,Chen, Jianhua,Luan, Mingbao. 2012

[4]Investigation of fermentation conditions and optimization of medium for taxol production from taxol-producing fungi. Zhao, Kai,Li, Zhugang,Ge, Nan,Li, Xiuliang,Wang, Xin,Zhou, Dongpo,Zhao, Kai. 2011

[5]Improved taxol production in Nodulisporium sylviforme derived from inactivated protoplast fusion. Zhao, Kai,Ma, Xi,Li, Xiuliang,Wang, Xin,Ping, Wenxiang,Zhou, Dongpo,Zhao, Kai,Sun, Lixin. 2011

[6]Development and validation of a multiclass method for the quantification of veterinary drug residues in honey and royal jelly by liquid chromatography-tandem mass spectrometry. Jin, Yue,Zhang, Jinzhen,Zhao, Wen,Zhang, Wenwen,Wang, Lin,Zhou, Jinhui,Li, Yi,Jin, Yue,Zhang, Jinzhen,Zhao, Wen,Wang, Lin,Zhou, Jinhui,Li, Yi,Jin, Yue,Zhang, Jinzhen,Zhao, Wen,Wang, Lin,Zhou, Jinhui,Li, Yi. 2017

[7]Histological and endogenous plant growth regulators changes associated with adventitious shoot regeneration from in vitro leaf explants of strawberry (Fragaria x ananassa cv. 'Honeoye'). Wang, Hua,Li, Maofu,Yang, Yuan,Dong, Jing,Jin, Wanmei.

[8]Simultaneous Determination of Perfluorinated Compounds in Edible Oil by Gel-Permeation Chromatography Combined with Dispersive Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry. Yang, Lili,Jin, Fen,Zhang, Peng,Zhang, Yanxin,Wang, Jian,Shao, Hua,Jin, Maojun,Wang, Shanshan,Zheng, Lufei,Wang, Jing.

[9]Simultaneous determination of five strobilurin fungicides and the metabolite BF-500-3 in cereals, fruits and vegetables. You, Xiangwei,Li, Yiqiang,You, Xiangwei,Peng, Wei,Liu, Fengmao,Shi, Kaiwei.

[10]Effects of feeding corn naturally contaminated with AFB(1) and AFB(2) on performance and aflatoxin residues in broilers. Yang, J.,Bai, F.,Zhang, K.,Bai, S.,Peng, X.,Ding, X.,Bai, F.,Zhao, L.,Li, Y.,Zhang, J.,Lv, X.. 2012

[11]Enantioselective degradation of Myclobutanil and Famoxadone in grape. Lin, Chunmian,Zhang, Lijun,Zhang, Hu,Wang, Qiang,Zhu, Jiahong,Wang, Jianmei,Qian, Mingrong. 2018

[12]Dissipation of pyraclostrobin and its metabolite BF-500-3 in maize under field conditions. You, Xiangwei,Liu, Congyun,Liu, Fengmao,Liu, Yanping,Dong, Jiannan,Liu, Congyun,Liu, Yanping.

[13]Oxidative stress and gene expression of earthworm (Eisenia fetida) to clothianidin. Liu, Tong,Wang, Xiuguo,You, Xiangwei,Chen, Dan,Li, Yiqiang,Wang, Fenglong.

[14]Analysis of Tebuconazole and Tetraconazole Enantiomers by Chiral HPLC-MS/MS and Application to Measure Enantioselective Degradation in Strawberries. Zhang, Hu,Wang, Minghua,Zhang, Hu,Qian, Mingrong,Wang, Xinquan,Wang, Xiangyun,Xu, Hao,Qi, Peipei,Wang, Qiang.

[15]Enantioselective Metabolism of Flufiprole in Rat and Human Liver Microsomes. Lin, Chunmian,Miao, Yelong,Qian, Mingrong,Wang, Qiang,Zhang, Hu.

[16]Enantioselective determination of acylamino acid fungicides in vegetables and fruits by chiral liquid chromatography coupled with tandem mass spectrometry. Zhang, Hu,Wang, Xinquan,Qian, Mingrong,Wang, Xiangyun,Xu, Hao,Qi, Peipei,Wang, Qiang,Zhang, Hu,Wang, Xinquan,Qian, Mingrong,Wang, Xiangyun,Xu, Hao,Qi, Peipei,Wang, Qiang,Zhang, Hu,Wang, Xinquan,Qian, Mingrong,Wang, Xiangyun,Xu, Hao,Qi, Peipei,Wang, Qiang,Zhang, Hu,Wang, Minghua,Zhang, Hu,Wang, Minghua,Jin, Lixia.

[17]HPLC-MS/MS enantioseparation of triazole fungicides using polysaccharide-based stationary phases. Zhang, Hu,Wang, Minghua,Zhang, Hu,Wang, Minghua,Zhang, Hu,Qian, Mingrong,Wang, Xinquan,Wang, Xiangyun,Xu, Hao,Wang, Qiang,Zhang, Hu,Qian, Mingrong,Wang, Xinquan,Wang, Xiangyun,Xu, Hao,Wang, Qiang,Zhang, Hu,Qian, Mingrong,Wang, Xinquan,Wang, Xiangyun,Xu, Hao,Wang, Qiang.

[18]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

[19]Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Wang, Shufen,He, Qiwei,Liu, Xianxian,Xu, Wenling,Li, Libin,Gao, Jianwei,Wang, Fengde,Wang, Xiufeng. 2012

[20]Transcriptome Analysis of Calcium and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development. Li, Yan,Meng, Jingjing,Yang, Sha,Guo, Feng,Zhang, Jialei,Geng, Yun,Cui, Li,Li, Xinguo,Wan, Shubo. 2017

作者其他论文 更多>>