Assessment of the genetic diversity of tomato yellow leaf curl virus

文献类型: 外文期刊

第一作者: Wan, H. J.

作者: Wan, H. J.;Wang, R. Q.;Ye, Q. J.;Ruan, M. Y.;Li, Z. M.;Zhou, G. Z.;Yao, Z. P.;Yang, Y. J.;Yuan, W.

作者机构:

关键词: Cluster analysis;Structural characteristics;Homology analysis;Tomato yellow leaf curl virus

期刊名称:GENETICS AND MOLECULAR RESEARCH ( 影响因子:0.764; 五年影响因子:0.912 )

ISSN: 1676-5680

年卷期: 2015 年 14 卷 1 期

页码:

收录情况: SCI

摘要: The objective of the present study was to analyze the genetic diversity of tomato yellow leaf curl virus (TYLCV). Representative TYLCV sequences were searched in the National Center for Biotechnology Information database. Comprehensive analysis of TYLCV was performed using bioinformatics by examining gene structure, sequence alignments, phylogeny, GC content, and homology. Forty-eight representative TYLCV sequences were selected from 48 regions in 29 countries. The results showed that all TYLCV sequences were 2752-2794 nucleotides in length, which encoded 6 open reading frames (AV1, AV2, AC1, AC2, AC3, and AC4). GC content ranged from 0.41-0.42. Sequence alignment showed a number of insertions and deletions within these TYLCV sequences. Phylogenetic tree results revealed that the sequences were divided into 10 classes; homology of the sequences ranged from 72.8 to 98.6%. All 48 sequences contained the typical structure of TYLCV, including open reading frames and intergenic regions. These results provide a theoretical basis for the identification and evolution of the virus in the future.

分类号:

  • 相关文献

[1]Hypoglycemic Effect of Chinese Yam (Dioscorea opposita rhizoma) Polysaccharide in Different Structure and Molecular Weight. Li, Qian,Li, Wenzhi,Gao, Qunyu,Li, Qian,Zou, Yuxiao,Li, Wenzhi. 2017

[2]Geometrical Stuidy on FMDV Genome Based on Z-Curve. Tang, Hua,Liu, Xin-Sheng,Fang, Yu-Zhen,Pan, Li,Zhang, Zong-Wang,Zhou, Peng,Lv, Jian-Liang,Jiang, Shou-Tian,Wang, Yong-Lu,Zhang, Yong-Guang. 2012

[3]Eugenol enhances the resistance of tomato against tomato yellow leaf curl virus. Wang, Chunmei,Fan, Yongjian,Wang, Chunmei.

[4]Genome-wide identification of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analyses in response to viral infection and abiotic stresses in Solanum lycopersicum. Mao, Zhen-Chuan,Kang, Hou-Xiang,Chen, Guo-Hua,Yang, Yu-Hong,Xie, Bing-Yan,Bai, Miao,Yang, Guo-Shun,Chen, Wen-Ting.

[5]Tomato Yellow Leaf Curl Virus V2 Interacts with Host Histone Deacetylase 6 To Suppress Methylation-Mediated Transcriptional Gene Silencing in Plants. Wang, Bi,Wang, Yaqin,Xie, Yan,Zhou, Xueping,Wang, Bi,Yang, Xiuling,Zhou, Xueping. 2018

[6]Elevated O-3 and TYLCV Infection Reduce the Suitability of Tomato as a Host for the Whitefly Bemisia tabaci. Cui, Hongying,Zhang, Youjun,Cui, Hongying,Sun, Yucheng,Ge, Feng,Chen, Fajun. 2016

[7]Control of Tomato yellow leaf curl virus disease by Enterobacter asburiae BQ9 as a result of priming plant resistance in tomatoes. Li, Hongwei,Ding, Xueling,Wang, Chao,Ke, Hongjiao,Wu, Zhou,Liu, Hongxia,Guo, Jianhua,Li, Hongwei,Wang, Chao,Ke, Hongjiao,Wu, Zhou,Liu, Hongxia,Guo, Jianhua,Ding, Xueling,Wang, Yunpeng. 2016

[8]Characterization and function of Tomato yellow leaf curl virus-derived small RNAs generated in tolerant and susceptible tomato varieties. Bai Miao,Yang Guo-shun,Chen Wen-ting,Lin Run-mao,Ling Jiang,Mao Zhen-chuan,Xie Bing-yang. 2016

[9]Different effects of exogenous jasmonic acid on preference and performance of viruliferous Bemisia tabaci B and Q. Liu, Yong,Shi, Xiaobin,Pan, Huipeng,Xie, Wen,Wang, Shaoli,Wu, Qingjun,Chen, Gong,Tian, Lixia,Zhang, Youjun,Zhou, Xuguo. 2017

[10]Virus-Infected Plants Altered the Host Selection of Encarsia formosa, a Parasitoid of Whiteflies. Liu, Xin,Zhang, Youjun,Xie, Wen,Wu, Qingjun,Wang, Shaoli,Chen, Gong. 2017

[11]Manipulation of Host Quality and Defense by a Plant Virus Improves Performance of Whitefly Vectors. Su, Qi,Zhou, Xiao Mao,Su, Qi,Xie, Wen,Liu, Bai Ming,Wang, Shao Li,Wu, Qing Jun,Zhang, You Jun,Preisser, Evan L..

[12]Tomato yellow leaf curl virus differentially influences plant defence responses to a vector and a non-vector herbivore. Su, Qi,Wang, Wenkai,Su, Qi,Wang, Shaoli,Chen, Gong,Xie, Wen,Wu, Qingjun,Zhang, Youjun,Mescher, Mark C..

[13]A SCAR Marker for Detection Resistant Gene Ty-3 in Tomato. Li Haitao,Liu Wenqi,Li Haitao,Zou Qingdao,Zhang Zijun. 2012

[14]In silico analysis of gene content in tomato genomic regions mapped to the Ty-2 resistance gene. Liu, Y. F.,Wan, H. J.,Wei, Y. P.,Wang, R. Q.,Ruan, M. Y.,Ye, Q. J.,Li, Z. M.,Zhou, G. Z.,Yao, Z. P.,Yang, Y. J.. 2015

[15]Pollen Quantity and Viability in 65 Litchi (Litchi chinensis Sonn.) Cultivars. Ou, Liangxi.

[16]Genetic diversity among mulberry genotypes from seven countries. Wang, Zhenjiang,Zhang, Yufei,Dai, Fanwei,Luo, Guoqing,Xiao, Gengsheng,Tang, Cuiming.

[17]Multivariate analyses of major and trace elements in 19 species of herbs consumed in Yunnan, China. Dong, Xiao-Lei,Dong, Xiao-Lei,Zhang, Ji,Zhao, Yan-Li,Zuo, Zhi-Tian,Wang, Yuan-Zhong,Zhang, Jin-Yu.

[18]Chemometrics analysis on the content of fatty acid compositions in different walnut (Juglans regia L.) varieties. Li, Qun,Hu, Xiao-jun,Gao, Zhong-dong,Yin, Rong,Zhang, Qian-ru,Wang, Xian-ping,Duan, Ze-min.

[19]Characterization of Chinese white-flesh peach cultivars based on principle component and cluster analysis. Lyu, Jian,Liu, Xuan,Bi, Jin-feng,Jiao, Yi,Wu, Xin-ye,Ruan, Weihong.

[20]Unique sequence characteristics of genes in the leftmost region of unique long region in duck enteritis virus. Liu, Xiaoli,Liu, Shengwang,Li, Huixin,Han, Zongxi,Shao, Yuhao,Kong, Xiangang.

作者其他论文 更多>>