Marker-free, tissue-specific expression of Cry1Ab as a safe transgenic strategy for insect resistance in rice plants

文献类型: 外文期刊

第一作者: Qi, Yongbin

作者: Qi, Yongbin;Chen, Lei;Jin, Qingsheng;Zhang, Xiaoming;Qi, Yongbin;He, Zuhua;He, Xiuling;He, Zuhua

作者机构:

关键词: Cry1Ab gene;rbcS promoter;Bt toxin;co-transformation;marker-free;tissue-specific expression

期刊名称:PEST MANAGEMENT SCIENCE ( 影响因子:4.845; 五年影响因子:4.674 )

ISSN: 1526-498X

年卷期: 2013 年 69 卷 1 期

页码:

收录情况: SCI

摘要: BACKGROUND: Rice is the major food resource for nearly half of the global population; however, insect infestation could severely affect the production of this staple food. To improve rice insect resistance and reduce the levels of Bt toxin released into the environment, the Cry1Ab gene was conjugated to the rice rbcS promoter to express Bt toxin in specific tissues of transgenic plants. RESULTS: Eight marker-free, T2 lines were separated from the T0 cotransformants. Using RT-PCR, high levels of Cry1Ab expression were detected in the leaf but not in the seed. The Cry1Ab protein level ranged from 1.66 to 3.31 mu g g-1 in the leaves of four transgenic lines, but was barely detectable in their seeds by ELISA. Bioassays showed that the mortality rate of silkworm larvae feeding on mulberry leaves dipped in transgenic rice flour and pollen was less than that of the positive control (KMD), and that their average weight was higher than that of KMD, suggesting that the Cry1Ab protein was not expressed in the seed and pollen. CONCLUSION: The transgene conferred a high level of resistance to insects and biosafety to the rice plants, which could be directly used in rice breeding. Copyright (c) 2012 Society of Chemical Industry

分类号:

  • 相关文献

[1]Green fluorescent protein as a vital elimination marker to easily screen marker-free transgenic progeny derived from plants co-transformed with a double T-DNA binary vector system. Chen, SB,Li, XG,Liu, X,Xu, HL,Meng, K,Xiao, GF,Wei, XL,Wang, F,Zhu, Z. 2005

[2]Development and drought tolerance assay of marker-free transgenic rice with OsAPX2 using biolistic particle-mediated co-transformation. Feng, Dan,Wang, Yanwei,Wu, Jinxia,Lu, Tiegang,Zhang, Zhiguo. 2017

[3]DNA degradation in genetically modified rice with Cry1Ab by food processing methods: Implications for the quantification of genetically modified organisms. Xing, Fuguo,Zhang, Wei,Selvaraj, Jonathan Nimal,Liu, Yang.

[4]Development and Characterization of Transgenic Sugarcane with Insect Resistance and Herbicide Tolerance. Wang, Wen Zhi,Yang, Ben Peng,Feng, Xiao Yan,Cao, Zheng Ying,Feng, Cui Lian,Wang, Jun Gang,Xiong, Guo Ru,Shen, Lin Bo,Zeng, Jun,Zhao, Ting Ting,Zhang, Shu Zhen. 2017

[5]Degradation of Endogenous and Exogenous Genes of Genetically Modified Rice with Cry1Ab during Food Processing. Zhang, Wei,Xing, Fuguo,Selvaraj, Jonathan Nimal,Liu, Yang. 2014

[6]Molecular cloning and functional analysis of NAC family genes associated with leaf senescence and stresses in Gossypium hirsutum L.. Shah, Syed Tariq,Pang, Chaoyou,Hussain, Anwar,Fan, Shuli,Song, Meizhen,Zamir, Roshan,Yu, Shuxun. 2014

[7]Highly interactive nature of flower-specific enhancers and promoters, and its potential impact on tissue-specific expression and engineering of multiple genes or agronomic traits. Wen, Zhifeng,Yang, Yazhou,Zhang, Jinjin,Wang, Xiping,Yang, Yingjun,Yan, Guohua,Liu, Zongrang,Wen, Zhifeng,Yang, Yazhou,Wang, Xiping,Zhang, Jinjin,Singer, Stacy,Liu, Zhongchi,Yang, Yingjun,Yan, Guohua.

[8]Genome-Wide Discovery of Tissue-Specific Genes in Maize. Lin, Feng,Bao, Huabin,Zhao, Han,Bao, Huabin,Yang, Jun,Liu, Yuhe,Dai, Huixue.

[9]Identification and Expression Analysis of Wheat TaGF14 Genes. Guo, Jun,Li, Haosheng,Liu, Aifeng,Liu, Cheng,Cheng, Dungong,Cao, Xinyou,Chu, Xiusheng,Zhai, Shengnan,Liu, Jianjun,Zhao, Zhendong,Song, Jianmin,Dai, Shuang. 2018

[10]Bacillus thuringiensis insecticidal crystal proteins affect lifespan and reproductive performance of helicoverpa armigera and spodoptera exigua adults. YING ZHANG,YAN MA,PIN-JUN WAN,LI-LI MU,GUO-QING LI.

[11]Effects of the consecutive cultivation and periodic residue incorporation of Bacillus thuringiensis (Bt) cotton on soil microbe-mediated enzymatic properties. Zhenhua Chen,Chen, Lijun,Kai Wei,Lijun Chen,Zhijie Wu,Junyu Luo,Jinjie Cui.

[12]Frequency of Bt resistance alleles in Helicoverpa armigera in 2007-2009 in the Henan cotton growing region of China. Feng, Hongqiang,Qiu, Feng,Gao, Yulin.

[13]Impacts of transgenic poplar-cotton agro-ecosystems upon target pests and non-target insects under field conditions. Zhang, D. J.,Liu, J. X.,Li, C. L.,Yang, M. S.,Zhang, D. J.,Lu, Z. Y.,Comada, E.. 2015

[14]Changes in susceptibility to conventional insecticides of a Cry1Ac-selected population of Helicoverpa armigera (Hubner) (Lepidoptera : Noctuidae). Guo, YY. 2004

[15]Expression of cadherin, aminopeptidase N and alkaline phosphatase genes in Cry1Ac-susceptible and Cry1Ac-resistant strains of Plutella xylostella (L.). Yang, Z-X.,Wu, Q-J.,Wang, S-L.,Chang, X-L.,Wang, J-H.,Guo, Z-J.,Lei, Y-Y.,Xu, B-Y.,Zhang, Y-J.,Yang, Z-X.. 2012

[16]Allelic-specific expression in relation to Bombyx mori resistance to Bt toxin. Chen, Yazhou,Islam, Iftakher,You, Lang,Wang, Yueqiang,Li, Zhiqian,Ling, Lin,Zeng, Baosheng,Xu, Jun,Huang, Yongping,Tan, Anjiang,Li, Muwang,Li, Muwang.

[17]Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Wang, Ke,Liu, Huiyun,Du, Lipu,Ye, Xingguo. 2017

[18]Multiple transgenes Populus xeuramericana 'Guariento' plants obtained by biolistic bombardment. Wang JianGe,Su XiaoHua,Ji LiLi,Zhang BingYu,Hu ZanMin,Huang RongFeng,Tian YingChuan. 2007

[19]Agrobacterium-mediated co-transformation of multiple genes in upland cotton. Li, Fei-Fei,Wu, Shen-Jie,Chen, Tian-Zi,Zhang, Jie,Wang, Hai-Hai,Guo, Wang-Zhen,Zhang, Tian-Zhen,Wu, Shen-Jie. 2009

[20]Excision of a selectable marker in transgenic lily (Sorbonne) using the Cre/loxP DNA excision system. Li, Sh.,Du, Y. -P.,Wang, Zh. -X.,Jia, G. -X.,Li, Sh.,Wu, Zh. -Y.,Huang, C. -L.,Zhang, X. -H.. 2013

作者其他论文 更多>>