Identification and evaluation of two diagnostic markers linked to Fusarium wilt resistance (race 4) in banana (Musa spp.)

文献类型: 外文期刊

第一作者: Hu, Yulin

作者: Hu, Yulin;Sun, Dequan;Xie, Jianghui;Wang, Wei;Staehelin, Christian;Xin, Dawei;Wang, Wei

作者机构:

关键词: Banana (Musa spp.);RAPD;SCAR markers;Fusarium wilt;Fusarium oxysporum f. sp cubense (race 4)

期刊名称:MOLECULAR BIOLOGY REPORTS ( 影响因子:2.316; 五年影响因子:2.357 )

ISSN: 0301-4851

年卷期: 2012 年 39 卷 1 期

页码:

收录情况: SCI

摘要: Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4) results in vascular tissue damage and ultimately death of banana (Musa spp.) plants. Somaclonal variants of in vitro micropropagated banana can hamper success in propagation of genotypes resistant to FOC4. Early identification of FOC4 resistance in micropropagated banana plantlets is difficult, however. In this study, we identified sequence-characterized amplified region (SCAR) markers of banana associated with resistance to FOC4. Using pooled DNA from resistant or susceptible genotypes and 500 arbitrary 10-mer oligonucleotide primers, 24 random amplified polymorphic DNA (RAPD) products were identified. Two of these RAPD markers were successfully converted to SCAR markers, called ScaU1001 (GenBank accession number HQ613949) and ScaS0901 (GenBank accession number HQ613950). ScaS0901 and ScaU1001 could be amplified in FOC4-resistant banana genotypes ("Williams 8818-1" and Goldfinger), but not in five tested banana cultivars susceptible to FOC4. The two SCAR markers were then used to identify a somaclonal variant of the genotype "Williams 8818-1", which lost resistance to FOC4. Hence, the identified SCAR markers can be applied for a rapid quality control of FOC4-resistant banana plantlets immediately after the in vitro micropropagation stage. Furthermore, ScaU1001 and ScaS0901 will facilitate marker-assisted selection of new banana cultivars resistant to FOC4.

分类号:

  • 相关文献

[1]Use of intersimple sequence repeats markers to develop strain-specific SCAR markers for Lentinula edodes. Qin, LH,Tan, Q,Chen, MJ,Pan, YJ.

[2]Variable content and distribution of arabinogalactan proteins in banana (Musa spp.) under low temperature stress. Chen, Houbin,Wang, Yingying,Xu, Enfeng,Xie, Ling,Su, Zhaohua,Xu, Chunxiang,Takac, Tomas,Samaj, Jozef,Li, Xiaoquan. 2015

[3]Efficient regeneration and genetic transformation platform applicable to five Musa varieties. Liu, Juhua,Gao, Pengzhao,Zhang, Jing,Jia, Caihong,Zhang, Jianbin,Hu, Wei,Xu, Biyu,Jin, Zhiqiang,Sun, Peiguang,Wang, Jiashui,Jin, Zhiqiang,Sun, Xiuxiu. 2017

[4]A systematic comparison of embryogenic and non-embryogenic cells of banana (Musa spp. AAA): Ultrastructural, biochemical and cell wall component analyses. Shi, Lei,Pan, Xiao,Chen, Houbin,Wu, Xiaoying,Xu, Chunxiang,Lin, Guimei,Takac, Tomas,Samaj, Jozef,Samaj, Jozef. 2013

[5]Genetic Diversity of Banana Cultivars (Musa spp.) Using SRAP Markers. Wei, Junya,Wei, Shouxing,Chen, Yeyuan. 2009

[6]Resistance to Fusarium oxysporum f. sp cubense tropical race 4 in African bananas. Molina, A. B.,Sinohin, V. O.,Fabregar, E. G.,Ramillete, E. B.,Yi, G.,Sheng, O.,Karamura, D.,Van den Bergh, I.,Viljoen, A.. 2016

[7]Carbon adaptation influence the antagonistic ability of Pseudomonas aeruginosa against Fusarium oxysporum f. sp melonis. Wang, Yanli,Sun, Guochang,Li, Bin,Tang, Qiaomei,Chen, Xiaoling,Xie, Guanlin,Li, Hongye,Yu, Rongrong,Wu, Zhiyi. 2011

[8]Soil Bacterial Community Was Changed after Brassicaceous Seed Meal Application for Suppression of Fusarium Wilt on Pepper. Ren, Gaidi,Ma, Yan,Guo, Dejie,Ren, Gaidi,Ma, Yan,Guo, Dejie,Ren, Gaidi,Ma, Yan,Guo, Dejie,Gentry, Terry J.,Hu, Ping,Pierson, Elizabeth A.,Gu, Mengmeng. 2018

[9]The Activities of Peroxidase and Polyphenoloxidase, and the Content of Soluble Protein in Fusaric Acid Resistant Chieh-qua during Infection with Fusarium oxysporum. Sun, Xiaowu,Wang, Yongfei,Ma, Sanmei,Wang, Lixian,Yu, Mengjie,Wang, Lixian,He, Xiaoming,Sun, Xiaowu. 2010

[10]Biofilm formation by Fusarium oxysporum f. sp cucumerinum and susceptibility to environmental stress. Li Peiqian,Pu Xiaoming,Huang Ning,Lin Birun,Pu Xiaoming,Shen Huifang,Zhang Jingxin,Huang Ning,Lin Birun. 2014

[11]Recent Occurrence of Fusarium oxysporum f. sp cubense Tropical Race 4 in Asia. Molina, A. B.,Sinohin, V. G.,Fabregar, E.,Yi, G.,Viljoen, A.. 2009

[12]Physiological Responses of Watermelon Grafted onto Bottle Gourd to Fusarium oxysporum f. sp niveum Infection. Zhang, M.,Yang, X. P.,Xu, J. H.,Liu, G.,Yao, X. F.,Li, P. F.. 2015

[13]An efficient protocol for the production of chit42 transgenic Furenzhi banana (Musa spp. AA group) resistant to Fusarium oxysporum. Hu, Chun-Hua,Wei, Yue-Rong,Huang, Yong-Hong,Yi, Gan-Jun,Hu, Chun-Hua,Wei, Yue-Rong,Huang, Yong-Hong,Yi, Gan-Jun. 2013

[14]Genetic analysis and chromosome mapping of resistance to Fusarium oxysporum f. sp niveum (FON) race 1 and race 2 in watermelon (Citrullus lanatus L.). Ren, Yi,Jiao, Di,Gong, Guoyi,Zhang, Haiying,Guo, Shaogui,Zhang, Jie,Xu, Yong,Ren, Yi,Jiao, Di,Gong, Guoyi,Zhang, Haiying,Guo, Shaogui,Zhang, Jie,Xu, Yong,Ren, Yi,Jiao, Di,Gong, Guoyi,Zhang, Haiying,Guo, Shaogui,Zhang, Jie,Xu, Yong,Ren, Yi,Jiao, Di.

[15]Development of InDel markers linked to Fusarium wilt resistance in cabbage. Lv, Hong-hao,Yang, Li-mei,Wang, Qing-biao,Wang, Xiao-wu,Fang, Zhi-yuan,Liu, Yu-mei,Zhuang, Mu,Zhang, Yang-yong,Lin, Yan,Yang, Yu-hong,Xie, Bing-yan,Liu, Bo,Liu, Ji-Sheng,Kang, Jun-gen.

[16]Impact of brassicaceous seed meals on the composition of the soil fungal community and the incidence of Fusarium wilt on chili pepper. Ma, Yan,Gentry, Terry,Hu, Ping,Pierson, Elizabeth,Gu, Mengmeng,Yin, Shixue.

[17]Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Xiong, Wu,Guo, Sai,Jousset, Alexandre,Li, Rong,Shen, Qirong,Xiong, Wu,Jousset, Alexandre,Kowalchuk, George A.,Xiong, Wu,Zhao, Qingyun,Wu, Huasong.

[18]Identification of defense-related genes in banana roots infected by Fusarium oxysporum f. sp cubense tropical race 4. Li, Weiming,Wang, Wei,Hu, Yulin,Mo, Yiwei,Sun, Dequan,Shi, Shengyou,Xie, Jianghui,Li, Weiming,Ge, Xuejun,Wu, Wei.

[19]Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton. Jinfa Zhang,Jiwen Yu,Wenfeng Pei,Xingli Li,Joseph Said,Mingzhou Song,Soum Sanogo. 2015

[20]Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea. Lv, Honghao,Fang, Zhiyuan,Yang, Limei,Zhang, Yangyong,Liu, Yumei,Zhuang, Mu,Yang, Yuhong,Xie, Bingyan,Liu, Bo,Liu, Jisheng,Wang, Xiaowu,Wang, Qingbiao,Kang, Jungen. 2014

作者其他论文 更多>>