The global adaptation of bread wheat at high latitudes

文献类型: 外文期刊

第一作者: Trethowan, R. M.

作者: Trethowan, R. M.;Morgunov, Alexei;He, Zhonghu;De Pauw, R.;Crossa, J.;Warburton, M.;Baytasov, Arman;Zhang, Chunli;Mergoum, M.;Alvarado, G.

作者机构:

关键词: high latitude;grain yield;adaptation;photoperiod response;bread wheat (T. aestivum)

期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )

ISSN: 0014-2336

年卷期: 2006 年 152 卷 3 期

页码:

收录情况: SCI

摘要: Spring sown bread wheat is grown at high latitudes in Europe, Asia and North America. However, it is not clear what the associations are among environments, particularly in Asia and North America, and whether or not cultivars developed in one region may adapt in another. A yield trial comprised of cultivars developed in northern Kazakhstan, western Siberia, the Canadian Prairies, northern USA, northeastern China and broadly adapted genotypes bred by CIMMYT in Mexico was planted in all the above mentioned environments in 2002-2004. In general, cultivars performed best within the regions they were developed. However, cultivars developed in northern Kazakhstan/western Siberia were the most broadly adapted at high latitudes; they were not significantly different for grain yield from the locally developed cultivars in both China and Canada. Stronger photoperiod response, greater plant height and larger seed weight appeared to be key adaptive features of these materials. At lower latitudes, the Kazakh/Siberian cultivars were significantly lower yielding than all other materials. When low latitude Mexican sites were removed from the analysis, the Chinese locations tended to associate, whereas most Canadian and Kazak/Siberian locations were negatively associated with those from China. SSR analysis of the cultivars from each region split the materials into two general groups, one based on North American cultivars and one comprised of Kazakh/Siberian and Chinese cultivars. Lines developed in Mexico were spread across these two groupings. Evidence suggests that considerable scope exists to improve bread wheat adaptation at high latitudes globally through intercrossing materials originating from Asia and North America.

分类号:

  • 相关文献

[1]Flowering time regulation by the CONSTANS-Like gene OsCOL10. Tan, Junjie,Wu, Fuqing,Wan, Jianmin,Wan, Jianmin,Tan, Junjie. 2017

[2]Ectopic expression of soybean methionine synthase delays flowering time in transgenic tobacco plants. Gao, Z. L.,Wu, H.,Lin, D. Z.,Zhang, Q. L.,Chen, Y. H.,Gao, Z. L.,Wu, H.,Lin, D. Z.,Zhang, Q. L.,Chen, Y. H.,Sha, A. H.,Sha, A. H..

[3]Mining and expression analysis of candidate genes involved in regulating the chilling requirement fulfillment of Paeonia lactiflora 'Hang Baishao'. Zhang, Jiaping,Li, Danqing,Zhang, Dong,Zhang, Jiao,Xia, Yiping,Shi, Xiaohua,Zhou, Jianghua,Zhu, Kaiyuan,Qiu, Shuai,Wei, Jianfen. 2017

[4]Distribution of the photoperiod insensitive Ppd-D1a allele in Chinese wheat cultivars. Yang, F. P.,Zhang, X. K.,Xia, X. C.,He, Z. H.,Yang, F. P.,Yang, W. X.,Zhang, X. K.,Laurie, D. A.,He, Z. H..

[5]Genetic analysis and QTL detection of reproductive period and post-flowering photoperiod responses in soybean. Cheng, Lirui,Wang, Ying,Zhang, Chunbin,Wu, Cunxiang,Xu, Jianlong,Zhu, Huiying,Leng, Jiantian,Bai, Yangnian,Guan, Rongxia,Hou, Wensheng,Han, Tianfu,Cheng, Lirui,Zhang, Lijuan.

[6]OsCOL10, a CONSTANS-Like Gene, Functions as a Flowering Time Repressor Downstream of Ghd7 in Rice. Tan, Junjie,Jin, Mingna,Wu, Fuqing,Sheng, Peike,Cheng, Zhijun,Wang, Jiulin,Zheng, Xiaoming,Wang, Min,Zhu, Shanshan,Guo, Xiuping,Zhang, Xin,Wang, Haiyang,Wu, Chuanyin,Wan, Jianmin,Tan, Junjie,Sheng, Peike,Liu, Xuanming,Wan, Jianmin,Wang, Jiachang,Chen, Liping,Wang, Chunming,Wan, Jianmin,Tan, Junjie.

[7]Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum. Wolabu, Tezera W.,Zhang, Fei,Niu, Lifang,Kalve, Shweta,Tadege, Million,Niu, Lifang,Bhatnagar-Mathur, Pooja,Muszynski, Michael G..

[8]The strategy of Na+ compartmentation and growth of Atriplex centralasiatica in adaptation to saline environments. Qiu, N.,Wang, Y.,Peng, X.,Qiu, N.,Zhou, F.,Hua, C.. 2014

[9]Multiple amino acid substitutions involved in the adaptation of H6N1 avian influenza virus in mice. Yu, Zhijun,Qin, Chuan,Xia, Xianzhu,Yu, Zhijun,Qin, Chuan,Xia, Xianzhu,Yu, Zhijun,Cheng, Kaihui,Xin, Yue,Sun, Weiyang,Li, Xue,Huang, Jing,Zhang, Kun,Yang, Songtao,Wang, Tiecheng,Zheng, Xuexing,Wang, Hualei,Qin, Chuan,Xia, Xianzhu,Cheng, Kaihui,Chai, Hongliang.

[10]Rapid acquisition adaptive amino acid substitutions involved in the virulence enhancement of an H1N2 avian influenza virus in mice. Yu, Zhijun,Sun, Weiyang,Zhang, Xinghai,Xia, Xianzhu,Gao, Yuwei,Xia, Xianzhu,Gao, Yuwei,Cheng, Kaihui,Zhao, Chuqi.

[11]Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). Von Wettstein, D.,Kou, H. P.,Li, Y.,Song, X. X.,Ou, X. F.,Liu, B.,Kou, H. P.,Li, Y.,Song, X. X.,Ou, X. F.,Liu, B.,Kou, H. P.,Ma, J.,Xing, S. C.. 2011

[12]Evolution of the PEBP gene family and selective signature on FT-like clade. Zheng, Xiao-Ming,Wu, Fu-Qing,Zhang, Xin,Lin, Qi-Bing,Wang, Jie,Guo, Xiu-Ping,Lei, Cai-Lin,Cheng, Zhi-Jun,Zou, Cheng,Wan, Jian-Min,Wan, Jian-Min. 2016

[13]The Sinocyclocheilus cavefish genome provides insights into cave adaptation. Yang, Junxing,Jiang, Wansheng,Pan, Xiaofu,Wang, Xiaoai,Chen, Xiaoyong,Zheng, Lanping,Chen, Xiaoli,Bai, Jie,Fang, Dongming,Qiu, Ying,Yuan, Hui,Bian, Chao,Lu, Jiang,He, Shiyang,Zhang, Yaolei,You, Xinxin,Wang, Yongsi,Sun, Ying,Mao, Danqing,Liu, Yong,Fan, Guangyi,Zhang, He,Zhang, Xinhui,Wang, Jintu,Chen, Jieming,Ruan, Zhiqiang,Li, Jia,Yu, Hui,Peng, Chao,Wang, Jian,Yang, Huanming,Wang, Jun,Xu, Xun,Bai, Jie,Qiu, Ying,Bian, Chao,You, Xinxin,Zhang, Xinhui,Chen, Jieming,Ruan, Zhiqiang,Li, Jia,Yu, Hui,Peng, Chao,Bai, Jie,Whitten, Tony,Qiu, Ying,Sun, Ying,Cheng, Le,Fang, Dongming,Lu, Jiang,He, Shiyang,Li, Jia,Yu, Hui,Zhang, Yaolei,Cheng, Le,Ma, Xingyu,Xu, Junmin,Shi, Qiong,Ma, Xingyu,Xu, Junmin,Shi, Qiong,He, You,Xu, Zhengfeng,Xu, Pao,Wang, Jian,Yang, Huanming,Wang, Jun. 2016

[14]Gene expression changes leading extreme alkaline tolerance in Amur ide (Leuciscus waleckii) inhabiting soda lake. Xu, Jian,Li, Qiang,Xu, Liming,Jiang, Yanliang,Zhao, Zixia,Zhang, Yan,Li, Jiongtang,Dong, Chuanju,Xu, Peng,Sun, Xiaowen,Wang, Shaolin,Dong, Chuanju. 2013

[15]Ecogeographic analysis of pea collection sites from China to determine potential sites with abiotic stresses. Li, Ling,Redden, Robert J.,Zong, Xuxiao,Berger, J. D.,Bennett, Sarita Jane.

[16]OsCOL16, encoding a CONSTANS-like protein, represses flowering by up regulating Ghd7 expression in rice. Wu, Weixun,Chen, Daibo,Zhang, Yingxin,Sun, Limping,Yang, Zhengfu,Zhao, Chunde,Zhan, Xiaodeng,Shen, Xihong,Yu, Ping,Fu, Yaping,Cao, Liyong,Cheng, Shihua,Wu, Weixun,Chen, Daibo,Zhang, Yingxin,Sun, Limping,Yang, Zhengfu,Zhao, Chunde,Zhan, Xiaodeng,Shen, Xihong,Yu, Ping,Fu, Yaping,Cao, Liyong,Cheng, Shihua,Zheng, Xiao-Ming,Ma, Weiwei,Zhang, Huan,Zhu, Shanshan.

[17]ALS herbicide resistance mutations in Raphanus raphanistrum: evaluation of pleiotropic effects on vegetative growth and ALS activity. Li, Mei,Yu, Qin,Han, Heping,Vila-Aiub, Martin,Powles, Stephen B.,Li, Mei,Vila-Aiub, Martin.

[18]DNA methylation pattern of Photoperiod-B1 is associated with photoperiod insensitivity in wheat (Triticum aestivum). Sun, Han,Guo, Zhiai,Gao, Lifeng,Zhao, Guangyao,Zhang, Wenping,Zhou, Ronghua,Wu, Yongzhen,Jia, Jizeng,Sun, Han,An, Hailong,Wang, Haiyang.

[19]Climate change impacts on crop yield and quality with CO2 fertilization in China. Lin, ED,Xiong, W,Ju, H,Xu, YL,Li, Y,Bai, LP,Xie, LY.

[20]Adaptation of the externally feeding bug Elasmucha necopinata (Hemiptera: Acanthosomatidae) to its fig host. Huang, Da-Wei,Ma, Guang-Chang,Hu, Hao-Yuan,Ma, Guang-Chang,Niu, Li-Ming,Fu, Yue-Guan,Peng, Zheng-Qiang,Bu, Wen-Jun,Huang, Da-Wei.

作者其他论文 更多>>