文献类型: 中文期刊
作者: 牛庆林 1 ; 冯海宽 2 ; 杨贵军 2 ; 李长春 2 ; 杨浩 2 ; 徐波 2 ; 赵衍鑫 3 ;
作者机构: 1.农业部农业遥感机理与定量遥感重点实验室北京农业信息技术研究中心;国家农业信息化工程技术研究中心;河南理工大学测绘与国土信息工程学院;北京市农业物联网工程技术研究中心;北京市农林科学院玉米研究中心
2.;农业部农业遥感机理与定量遥感重点实验室北京农业信息技术研究中心;国家农业信息化工程技术研究中心;河南理工大学测绘与国土信息工程学院;北京市农业物联网工程技术研究中心;北京市农林科学院玉米研究中心
3.;农业部农业遥感机理与定量遥感重点实验室北京农业信息技术研究中心;国家农业信息化工程技术研究中心;河南理工大学测绘与国土信息工程学院;北京市农业物联网工程技术研究中心;北京市农林科学院玉米研究中心;
关键词: 无人机;农作物;提取;数码影像;玉米育种材料;株高;叶面积指数;逐步回归
期刊名称: 农业工程学报
ISSN: 1002-6819
年卷期: 2018 年 05 期
页码: 73-82
收录情况: EI ; 北大核心 ; CSCD
摘要: 快速、无损和高通量地获取田间株高(height,H)和叶面积指数(leaf area index,LAI)表型信息,对玉米育种材料的长势监测及产量预测具有重要的意义。基于无人机(unmanned aerial vehicle,UAV)遥感平台搭载高清数码相机构建低成本的遥感数据获取系统,于2017年5—9月在北京市昌平区小汤山镇国家精准农业研究示范基地的玉米育种材料试验田,获取试验田苗期、拔节期、喇叭口期和抽雄吐丝期的高清数码影像和地面实测的H、LAI和地面控制点(ground control point,GCP)的三维空间坐标。首先,基于高清数码影像结合GCP生成试验田的数字表面模型(digital surface model,DSM)和高清数码正射影像(digital orthophoto map,DOM);然后,基于DSM和DOM分别提取玉米育种材料的H和数码影像变量,其中将DOM的红、绿和蓝通道的DN(digital number)值分别定义为R、G和B,进行归一化后得到数码影像变量,分别定义为r、g和b;最后,基于实测H对DSM提取的H进行了精度验证,并用逐步回归分析方法进行了LAI的估测。结果表明,实测H和DSM提取的H高度拟合(R~2、RMSE和n RMSE分别为0.93,28.69 cm和17.90%);仅用数码影像变量估测LAI,得到最优的估测变量为r和r/b,其估算模型和验证模型的R~2、RMSE和n RMSE分别为0.63,0.40,26.47%和0.68,0.38,25.51%;将H与数码影像变量进行融合估测LAI,得到最优的估测变量为H、g和g/b,其估算模型和验证模型的R~2、RMSE和n RMSE分别为0.69,0.37,24.34%和0.73,0.35,23.49%。研究表明,基于无人机高清数码影像结合GCP生成DSM,提取玉米育种材料的H,精度较高;将H与数码影像变量进行融合估测LAI,与仅用数码影像变量相比,估测模型和验证模型的精度明显提高。该研究可为玉米育种材料的田间表型信息监测提供参考。
- 相关文献
[1]基于无人机数码影像的冬小麦株高和生物量估算. 陶惠林,徐良骥,冯海宽,杨贵军,杨小冬,苗梦珂,代阳. 2019
[2]基于无人机数码影像的冬小麦叶面积指数探测研究. 高林,杨贵军,李红军,李振海,冯海宽,王磊,董锦绘,贺鹏. 2016
[3]基于无人机数码影像的大豆育种材料叶面积指数估测. 李长春,牛庆林,杨贵军,冯海宽,刘建刚,王艳杰. 2017
[4]利用无人机数码影像估算马铃薯地上生物量. 刘杨,黄珏,孙乾,冯海宽,杨贵军,杨福芹. 2021
[5]基于冠层光谱特征和株高的马铃薯植株氮含量估算. 樊意广,冯海宽,刘杨,边明博,孟炀,杨贵军. 2022
[6]基于无人机数码影像和高光谱数据的冬小麦产量估算对比. 陶惠林,冯海宽,杨贵军,杨小冬,苗梦珂,吴智超,翟丽婷. 2019
[7]融合无人机影像光谱与纹理特征的冬小麦氮营养指数估算. 杨福芹,冯海宽,肖天豪,李天驰,郭向前. 2020
[8]基于无人机多光谱影像的夏玉米叶片氮含量遥感估测. 魏鹏飞,徐新刚,李中元,杨贵军,李振海,冯海宽,陈帼,范玲玲,王玉龙,刘帅兵. 2019
[9]利用无人机高光谱影像的冬小麦氮含量监测. 冯海宽,樊意广,陶惠林,杨福芹,杨贵军,赵春江. 2023
[10]基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用. 高林,杨贵军,李长春,冯海宽,徐波,王磊,董锦绘,付奎. 2017
[11]基于无人机遥感影像的大豆叶面积指数反演研究. 高林,杨贵军,王宝山,于海洋,徐波,冯海宽. 2015
[12]基于多源遥感数据的大豆叶面积指数估测精度对比. 高林,李长春,王宝山,杨贵军,王磊,付奎. 2016
[13]基于无人机高光谱遥感的冬小麦叶面积指数反演. 高林,杨贵军,于海洋,徐波,赵晓庆,董锦绘,马亚斌. 2016
[14]基于无人机成像高光谱影像的冬小麦LAI估测. 陶惠林,冯海宽,杨贵军,杨小冬,刘明星,刘帅兵. 2020
[15]基于随机森林算法的冬小麦叶面积指数遥感反演研究. 张春兰,杨贵军,李贺丽,汤伏全,刘畅,张丽妍. 2018
[16]病害胁迫下玉米LAI遥感反演研究. 刘帅兵,金秀良,冯海宽,聂臣巍,白怡,程明瀚. 2023
[17]基于无人机数码影像的马铃薯生物量估算. 刘杨,冯海宽,黄珏,孙乾,杨福芹. 2020
[18]基于无人机高光谱影像的马铃薯株高和地上生物量估算. 刘杨,冯海宽,黄珏,孙乾,杨福芹,杨贵军. 2021
[19]无人机影像光谱和纹理融合信息估算马铃薯叶片叶绿素含量. 陈鹏,冯海宽,李长春,杨贵军,杨钧森,杨文攀,刘帅兵. 2019
[20]基于无人机热红外与数码影像的玉米冠层温度监测. 杨文攀,李长春,杨浩,杨贵军,冯海宽,韩亮,牛庆林,韩东. 2018
作者其他论文 更多>>
-
无人机观测时间对玉米冠层叶绿素密度估算的影响
作者:周丽丽;冯海宽;聂臣巍;许晓斌;刘媛;孟麟;薛贝贝;明博;梁齐云;苏涛;金秀良
关键词:冠层叶绿素密度;观测时间;机器学习;PROSAIL模型;玉米
-
基于点云深度学习的果树枝条实例分割算法
作者:蒋心恺;吴金涛;王锐;王明亮;杨浩
关键词:点云;枝条实例分割;三维深度学习;相似性矩阵
-
基于Sentinel数据与多特征学习的大豆种植面积提取
作者:段承君;杜晓初;龙慧灵;梅新;杨贵军;张有智
关键词:大豆;种植面积;机器学习;Google Earth Engine
-
秦岭植被生态空天地遥感监测体系与平台建设构思
作者:张静;杨贵军;李振洪;雷蕾;刘淼;高美玲
关键词:遥感;植被;监测体系;生态环境;时空演变
-
基于高光谱和深度学习的水稻秸秆覆盖度遥感估算
作者:岳继博;李婷;宋洁;田庆久;刘杨;冯海宽
关键词:卷积神经网络;水稻秸秆覆盖度;深度学习;迁移学习
-
多源遥感数据耦合CBA-Wheat模型的冬小麦生物量估算研究
作者:王士俊;刘苗;赵钰;柳昭宇;刘修宇;冯海宽;隋学艳;李振海
关键词:冬小麦;地上生物量;遗传算法;CBA-Wheat;多源数据;EVI2;Sentinel-2;遥感
-
Spiking-Hybrid方法与机器学习结合的冬小麦LAI反演
作者:李平平;王夏军;王来刚;杨贵军;马园园;孙贺光;郑淳恺;宋晓宇
关键词:小麦;高光谱;Spiking-Hybrid方法;PROSAIL;少样本