您好,欢迎访问北京市农林科学院 机构知识库!

改进YOLOv4的温室环境下草莓生育期识别方法

文献类型: 中文期刊

作者: 龙洁花 1 ; 郭文忠 1 ; 林森 1 ; 文朝武 1 ; 张宇 1 ; 赵春江 1 ;

作者机构: 1.北京市农林科学院智能装备技术研究中心;上海海洋大学信息学院

关键词: 目标检测;草莓;生育期识别;YOLOv4;残差模块;注意力机制;损失函数

期刊名称: 智慧农业(中英文)

ISSN: 2096-8094

年卷期: 2021 年 04 期

页码: 99-110

摘要: 针对目前设施农业数字化栽培调控技术中对作物的生育期实时检测与分类问题,提出一种改进YOLOv4的温室环境下草莓生育期识别方法。该方法将注意力机制引入到YOLOv4主干网络的跨阶段局部残差模块(Cross Stage Partial Residual,CSPRes)中,融合草莓不同生长时期的目标特征信息,同时降低复杂背景的干扰,提高模型检测精度的同时保证实时检测效率。以云南地区的智能设施草莓为试验对象,结果表明,本研究提出的YOLOv4-CBAM (YOLOv4-Convolutional Block Attention Module)模型对开花期、果实膨大期、绿果期和成熟期草莓的检测平均精度(Average Precision,AP)分别为92.38%、82.45%、68.01%和92.31%,平均精度均值(Mean Average Precision,mAP)为83.79%,平均交并比(Mean Inetersection over Union,mIoU)为77.88%,检测单张图像时间为26.13 ms。YOLOv4-CBAM模型检测草莓生育期的mAP相比YOLOv4、YOLOv4-SE、YOLOv4-SC模型分别提高8.7%、4.82%和1.63%。该方法可对草莓各生育期目标进行精准识别和分类,并为设施草莓栽培的信息化、规模化调控提供有效的理论依据。

  • 相关文献

[1]基于改进YOLOv4算法的番茄叶部病害识别方法. 储鑫,李祥,罗斌,王晓冬,黄硕. 2023

[2]大田环境下的农业害虫图像小目标检测算法. 蒋心璐,陈天恩,王聪,赵春江. 2024

[3]基于改进YOLO v5的复杂环境下桑树枝干识别定位方法. 李丽,卢世博,任浩,徐刚,周永忠. 2024

[4]基于改进YOLO v8的轻量化稻瘟病孢子检测方法. 罗斌,李家超,周亚男,潘大宇,黄硕. 2024

[5]基于卷积神经网络的田间麦穗检测方法研究. 张合涛,赵春江,王传宇,郭新宇,李大壮,苟文博. 2023

[6]融合注意力机制的开集猪脸识别方法. 王荣,高荣华,李奇峰,刘上豪,于沁杨,冯璐. 2023

[7]基于Attention_DenseCNN的水稻问答系统问句分类. 王郝日钦,吴华瑞,冯帅,刘志超,许童羽. 2021

[8]基于注意力机制及多尺度特征融合的番茄叶片缺素图像分类方法. 韩旭,赵春江,吴华瑞,朱华吉,张燕. 2021

[9]基于注意力机制的农业文本命名实体识别. 赵鹏飞,赵春江,吴华瑞,王维. 2021

[10]基于注意力机制和多尺度残差网络的农作物病害识别. 黄林生,罗耀武,杨小冬,杨贵军,王道勇. 2021

[11]基于改进UperNet的结球甘蓝叶球识别方法. 朱轶萍,吴华瑞,郭旺,吴小燕. 2024

[12]基于改进YOLOV5s网络的奶牛多尺度行为识别方法. 白强,高荣华,赵春江,李奇峰,王荣,李书琴. 2022

[13]基于多尺度和注意力机制的番茄病害识别方法. 张宁,吴华瑞,韩笑,缪祎晟. 2021

[14]基于YOLOX的穴盘甘蓝病害检测方法. 马驰,吴华瑞,于会山. 2023

[15]复杂场景下害虫目标检测算法:YOLOv8-Extend. 张荣华,白雪,樊江川. 2024

[16]基于改进边界匹配网络的鱼群摄食动作时序检测方法研究. 王丁弘,杨信廷,潘良,朱文韬,焦冬祥,周超. 2023

[17]基于可见光谱和改进注意力的农作物病害识别. 孙文斌,王荣,高荣华,李奇峰,吴华瑞,冯璐. 2022

[18]融合农村居民意图的健康知识推荐方法. 王馨悦,吴华瑞,陈雯柏,韩笑,朱华吉,赵春江. 2024

[19]基于实例分割的柑橘花朵识别及花量统计. 邓颖,吴华瑞,朱华吉. 2020

[20]农业害虫检测的深度学习算法综述. 蒋心璐,陈天恩,王聪,李书琴,张宏鸣,赵春江. 2023

作者其他论文 更多>>