您好,欢迎访问北京市农林科学院 机构知识库!

冬小麦生育前期LAI高光谱反演研究

文献类型: 中文期刊

作者: 何小安 1 ; 李存军 1 ; 周静平 1 ; 赵叶 1 ; 葛艳 1 ;

作者机构: 1.北京农业信息技术研究中心;西安科技大学

关键词: 冬小麦;LAI;生育前期;高光谱;反演

期刊名称: 中国农业信息

ISSN: 1672-0423

年卷期: 2019 年 06 期

页码: 35-46

摘要: 【目的】冬小麦生育前期稀疏植被条件下叶面积指数反演对于播期、早期苗情监测有重要意义。【方法】文章利用实测冬小麦生育前期冠层高光谱数据,基于相关关系矩阵图筛选7个新的敏感植被指数、优选40个前人研究的双波段组合或多波段组合植被指数,利用单变量回归和偏最小二乘多变量回归分析47个植被指数与稀疏冬小麦叶面积指数(LAI)的相关性。【结果】植被指数PVR(650,550)、VARI(680,555,480)、RVI(1 868,1 946)与LAI相关性好,其中PVR(650,550)与LAI构建的模型拟合度最好,决定系数R~2为0.730,均方根误差RMSE为0.450。而相对单个植被指数,利用多个植被指数的偏最小二乘多元回归模型提高了LAI估算精度,R~2为0.779,RMSE为0.380。【结论】在冬小麦生育前期植被稀疏条件下,利用高光谱数据反演冬小麦LAI是可行的,可为冬小麦早期长势遥感监测提供支撑。

  • 相关文献

[1]基于PROBA/CHRIS遥感数据和PROSAIL模型的春小麦LAI反演. 杨贵军,赵春江,邢著荣,黄文江,王纪华. 2011

[2]不同生育期倒伏胁迫下玉米叶面积指数高光谱响应解析. 周龙飞,张云鹤,成枢,顾晓鹤,杨贵军,孙乾,束美艳. 2019

[3]北京地区冬小麦冠层光谱数据与叶面积指数统计关系研究. 刘东升,李淑敏. 2008

[4]利用高光谱指数进行冬小麦条锈病严重度的反演研究. 黄文江,黄木易,刘良云,王纪华,赵春江,王锦地. 2005

[5]基于ASAR的冬小麦不同生育期土壤湿度反演. 鲍艳松,刘利,孔令寅,王纪华,刘良云. 2010

[6]不同氮素营养条件下的冬小麦生理及光谱特性. 景娟娟,王纪华,王锦地,刘良云,黄文江,赵春江. 2003

[7]表征冬小麦倒伏强度敏感冠层结构参数筛选及光谱诊断模型. 束美艳,顾晓鹤,孙林,朱金山,杨贵军,王延仓. 2019

[8]最小二乘支持向量机方法对冬小麦叶面积指数反演的普适性研究. 谢巧云,黄文江,梁栋,彭代亮,黄林生,宋晓宇,张东彦,杨贵军. 2014

[9]基于高光谱遥感与SAFY模型的冬小麦地上生物量估算. 刘明星,李长春,李振海,冯海宽,杨贵军,陶惠林. 2020

[10]基于面积指数的植株氮含量遥感估算. 杨福芹,冯海宽,谢瑞,韩佩佩,戴渝心,蔡国盛,金丽妍. 2020

[11]冬小麦条锈病的光谱特征及遥感监测. 王纪华,黄文江,黄义德,赵春江,万安民. 2003

[12]冬小麦条锈病生理变化及其遥感机理. 黄义德,黄文江,刘良云,王纪华,万安民. 2004

[13]基于新型植被指数的冬小麦LAI高光谱反演. 束美艳,顾晓鹤,孙林,朱金山,杨贵军,王延仓,张丽妍. 2018

[14]利用高光谱微分指数进行冬小麦条锈病病情的诊断研究. 蒋金豹,陈云浩,黄文江. 2007

[15]冬小麦白粉病冠层光谱特征解析与病情指数反演. 范友波,顾晓鹤,王双亭,杨贵军,王磊,王立志,陈召霞. 2017

[16]病害胁迫下冬小麦冠层叶片色素含量高光谱遥感估测研究. 蒋金豹,陈云浩,黄文江. 2007

[17]条锈病胁迫下冬小麦冠层叶片氮素含量的高光谱估测模型. 蒋金豹,陈云浩,黄文江,李京. 2008

[18]基于无人机数码影像和高光谱数据的冬小麦产量估算对比. 陶惠林,冯海宽,杨贵军,杨小冬,苗梦珂,吴智超,翟丽婷. 2019

[19]基于无人机高光谱遥感数据的冬小麦生物量估算. 陶惠林,冯海宽,徐良骥,杨贵军,杨小冬,苗梦珂,刘明星. 2020

[20]基于无人机高光谱遥感的冬小麦株高和叶面积指数估算. 陶惠林,徐良骥,冯海宽,杨贵军,代阳,牛亚超. 2020

作者其他论文 更多>>