文献类型: 中文期刊
作者: 冯海宽 1 ; 樊意广 1 ; 陶惠林 1 ; 杨福芹 1 ; 杨贵军 1 ; 赵春江 1 ;
作者机构: 1.农业部农业遥感机理与定量遥感重点实验室北京市农林科学院信息技术研究中心
关键词: 无人机;冬小麦;高光谱;氮含量;逐步回归;光谱特征参数
期刊名称: 光谱学与光谱分析
ISSN: 1000-0593
年卷期: 2023 年 43 卷 010 期
页码: 3239-3246
收录情况: EI ; SCI ; 北大核心 ; CSCD
摘要: 作物氮含量影响作物的生长状况,合适的施氮量可以促进作物生长和提高作物产量,因此准确、快速地监测作物的氮含量十分必要.旨在探索将无人机成像高光谱获取的植被指数和光谱特征参数相结合以提高冬小麦关键生育期氮含量估算精度的潜力.首先,以无人机为遥感平台,搭载高光谱传感器获取了冬小麦拔节期、挑旗期、开花期和灌浆期 4 个主要生育期的高光谱遥感影像,并实测了各生育期的氮含量数据.其次,基于预处理后的高光谱影像,提取冬小麦各生育期的冠层反射率数据,并构造能较好反映作物氮素营养状况的 12 种植被指数和 12 种光谱特征参数.然后,计算了各光谱参数与冬小麦氮含量的相关性,并筛选出各生育期与氮含量相关性较强的植被指数和光谱特征参数;最后,利用逐步回归分析(SWR)构建基于植被指数、植被指数结合光谱特征参数的氮含量估算模型.结果显示:(1)选取的大部分植被指数和光谱特征参数与冬小麦氮含量都有较高的相关性.其中,植被指数的相关性高于光谱特征参数;(2)基于单个植被指数或光谱特征参数估算冬小麦虽然可行,但精度还有待进一步提高;(3)与单一植被指数或光谱特征参数相比,植被指数结合光谱特征变量利用 SWR方法构建的氮含量估算模型的精度和稳定性更高(拔节期:建模R2=0.64,RMSE=24.68%,NRMSE=7.96%,验证R2 =0.77,RMSE=23.13%,NRMSE=7.81%;挑旗期:建模R2=0.81,RMSE=15.79%,NRMSE=7.41%,验证R2 =0.84,RMSE=15.10%,NRMSE= 7.08%;开花期:建模R2 =0.78,RMSE=9.88%,NRMSE=5.66%,验证R2 =0.85,RMSE=9.12%,NRMSE=4.76%;灌浆期:建模R2=0.49,RMSE=13.68%,NRMSE=9.85%,验证R2=0.40,RMSE= 18.29%,NRMSE=14.73%).研究结果表明,结合无人机成像高光谱获取的植被指数和光谱特征参数构建的冬小麦氮含量估算模型精度和稳定性较高,研究结果可为冬小麦氮含量的空间分布和精准管理提供参考.
- 相关文献
[1]基于无人机数码影像的冬小麦株高和生物量估算. 陶惠林,徐良骥,冯海宽,杨贵军,杨小冬,苗梦珂,代阳. 2019
[2]基于无人机数码影像和高光谱数据的冬小麦产量估算对比. 陶惠林,冯海宽,杨贵军,杨小冬,苗梦珂,吴智超,翟丽婷. 2019
[3]基于无人机高光谱遥感数据的冬小麦生物量估算. 陶惠林,冯海宽,徐良骥,杨贵军,杨小冬,苗梦珂,刘明星. 2020
[4]基于随机森林算法的冬小麦叶面积指数遥感反演研究. 张春兰,杨贵军,李贺丽,汤伏全,刘畅,张丽妍. 2018
[5]融合多因子的无人机高光谱遥感冬小麦产量估算. 谢瑞,杨福芹,冯海宽,李天驰. 2023
[6]苹果叶片磷含量高光谱估测模型研究. 杨福芹,冯海宽,蒋瑞波,孙冰可,张周,姚真真,李天驰. 2021
[7]基于无人机多光谱影像的夏玉米叶片氮含量遥感估测. 魏鹏飞,徐新刚,李中元,杨贵军,李振海,冯海宽,陈帼,范玲玲,王玉龙,刘帅兵. 2019
[8]基于无人机数码影像的玉米育种材料株高和LAI监测. 牛庆林,冯海宽,杨贵军,李长春,杨浩,徐波,赵衍鑫. 2018
[9]基于无人机成像高光谱估算马铃薯植株氮含量. 樊意广,冯海宽,刘杨,龙慧灵,杨贵军,钱建国. 2023
[10]病害胁迫下玉米LAI遥感反演研究. 刘帅兵,金秀良,冯海宽,聂臣巍,白怡,程明瀚. 2023
[11]冬小麦SPAD值无人机可见光和多光谱植被指数结合估算. 牛庆林,冯海宽,周新国,朱建强,雍蓓蓓,李会贞. 2021
[12]不同生育期冬小麦植株氮含量遥感反演方法比较. 杨福芹,李蕊,冯海宽,李天驰,王果. 2023
[13]不同氮素营养条件下的冬小麦生理及光谱特性. 景娟娟,王纪华,王锦地,刘良云,黄文江,赵春江. 2003
[14]表征冬小麦倒伏强度敏感冠层结构参数筛选及光谱诊断模型. 束美艳,顾晓鹤,孙林,朱金山,杨贵军,王延仓. 2019
[15]最小二乘支持向量机方法对冬小麦叶面积指数反演的普适性研究. 谢巧云,黄文江,梁栋,彭代亮,黄林生,宋晓宇,张东彦,杨贵军. 2014
[16]基于高光谱遥感与SAFY模型的冬小麦地上生物量估算. 刘明星,李长春,李振海,冯海宽,杨贵军,陶惠林. 2020
[17]基于面积指数的植株氮含量遥感估算. 杨福芹,冯海宽,谢瑞,韩佩佩,戴渝心,蔡国盛,金丽妍. 2020
[18]冬小麦条锈病的光谱特征及遥感监测. 王纪华,黄文江,黄义德,赵春江,万安民. 2003
[19]冬小麦条锈病生理变化及其遥感机理. 黄义德,黄文江,刘良云,王纪华,万安民. 2004
[20]基于新型植被指数的冬小麦LAI高光谱反演. 束美艳,顾晓鹤,孙林,朱金山,杨贵军,王延仓,张丽妍. 2018
作者其他论文 更多>>
-
智慧农业科技创新引领农业新质生产力发展路径
作者:曹冰雪;李鸿飞;赵春江;李瑾
关键词:智慧农业;科技创新;农业新质生产力;数据要素;智能育种
-
果园风送喷雾风力调控试验台设计及试验
作者:李琪;窦汉杰;翟长远;高原源;杨硕;赵春江
关键词:果园精准施药;风力调控试验台;风送喷雾
-
基于实例分割技术的草莓叶龄及冠幅表型快速提取方法
作者:樊江川;王源桥;苟文博;蔡双泽;郭新宇;赵春江
关键词:移动式表型平台;实例分割;草莓表型;叶龄统计;冠幅;Mask R-CNN;ResNeSt
-
基于Sentinel-2时序数据的广东省英德市茶园分类研究
作者:陈盼盼;任艳敏;赵春江;李存军;刘玉
关键词:茶园;Sentinel-2;时序特征;机器学习;分类
-
无人机观测时间对玉米冠层叶绿素密度估算的影响
作者:周丽丽;冯海宽;聂臣巍;许晓斌;刘媛;孟麟;薛贝贝;明博;梁齐云;苏涛;金秀良
关键词:冠层叶绿素密度;观测时间;机器学习;PROSAIL模型;玉米
-
大田环境下的农业害虫图像小目标检测算法
作者:蒋心璐;陈天恩;王聪;赵春江
关键词:深度学习;目标检测;害虫检测;小目标检测;损失函数
-
内蒙古现代畜牧业发展研究
作者:赵春江
关键词:现代畜牧业;高质量发展;内蒙古