您好,欢迎访问北京市农林科学院 机构知识库!

基于成像高光谱仪的大豆叶面积指数反演研究

文献类型: 中文期刊

作者: 陆国政 1 ; 李长春 1 ; 杨贵军 2 ; 于海洋 2 ; 赵晓庆 2 ; 张晓燕 3 ;

作者机构: 1.河南理工大学

2.国家农业信息化工程技术研究中心

3.南京农业大学

关键词: 无人;遥感;数码;成像高光谱仪;植被指数;叶面积指数

期刊名称: 大豆科学

ISSN: 1000-9841

年卷期: 2016 年 35 卷 04 期

页码: 599-608

收录情况: 北大核心 ; CSCD

摘要: 高光谱遥感能连续获取地物光谱图像,这一技术能大大提高估算叶面积指数的水平。利用无人机搭载成像高光谱仪获取作物光谱信息反演叶面积指数对精准农业生产与管理意义重大。通过灰色关联度排序、赤池信息量准则和偏最小二乘法(GRA-PLS-AIC)选择了三角植被指数(TVI)、比值植被指数(RVI)、红边植被指数(NDVI705)、归一化植被指数(NDVI)和重归一化植被指数(RDVI)5种植被指数,结合田间实测的叶面积指数数据,采用经验模型构建多指数反演模型。通过无人机为平台同步搭载数码相机和成像高光谱仪,在山东省嘉祥县一带获取了大豆生殖生长期内的遥感影像,同时利用LAI-2200C植物冠层分析仪进行叶面积指数测定,将获取到的遥感影像和地面实测数据进行叶面积指数的反演。结果表明:在大豆生殖生长期内建多指数模型,建模结果的预测值和实测值的R~2和RMSE分别为0.701和0.672,验证结果的R~2和RMSE分别为0.695和0.534,预测模型有比较高的精度和可靠性,利用该模型来反演LAI是准确的,生成的大豆LAI分布图能反映当地当时大豆的真实长势情况。因此,以多旋翼无人机为平台同步搭载高清数码相机和成像高光谱仪组成的无人机农情监测系统对研究大豆叶面积指数反演是可行性,构建的多指数模型适用于大豆生殖生长期。

  • 相关文献

[1]基于无人机遥感影像的大豆叶面积指数反演研究. 高林,杨贵军,王宝山,于海洋,徐波,冯海宽. 2015

[2]基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演. 李鑫川,徐新刚,鲍艳松,黄文江,罗菊花,董莹莹,宋晓宇,王纪华. 2012

[3]基于支持向量机回归的冬小麦叶面积指数遥感反演. 梁栋,管青松,黄文江,黄林生,杨贵军. 2013

[4]基于热点植被指数的冬小麦叶面积指数估算. 陈瀚阅,牛铮,黄文江,黄妮,张瀛. 2012

[5]自主研制的田间成像高光谱仪农学建模研究. 黄文江,张东彦,马智宏,王秋平. 2010

[6]小麦群体叶面积指数差异的反射光谱响应度研究. 杨敏华,胡慧萍,赵永超,王之杰,赵春江. 2004

[7]基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用. 高林,杨贵军,李长春,冯海宽,徐波,王磊,董锦绘,付奎. 2017

[8]基于CASI高光谱数据的作物叶面积指数估算. 唐建民,廖钦洪,刘奕清,杨贵军,冯海宽,王纪华. 2015

[9]基于多源遥感数据的大豆叶面积指数估测精度对比. 高林,李长春,王宝山,杨贵军,王磊,付奎. 2016

[10]基于无人机高光谱遥感的冬小麦株高和叶面积指数估算. 陶惠林,徐良骥,冯海宽,杨贵军,代阳,牛亚超. 2020

[11]基于无人机多光谱遥感的春玉米叶面积指数和地上部生物量估算模型比较研究. 樊鸿叶,李姚姚,卢宪菊,顾生浩,郭新宇,刘玉华. 2021

[12]冬小麦不同株型品种光谱响应及株型识别方法研究. 卢艳丽,李少昆,王纪华,谢瑞芝,黄文江,高世菊,刘良云,王之杰. 2005

[13]基于多载荷无人机遥感的大豆地上鲜生物量反演. 陆国政,杨贵军,赵晓庆,王艳杰,李长春,张小燕. 2017

[14]作物病虫害遥感监测研究进展. 张竞成,袁琳,王纪华,罗菊花,杜世州,黄文江. 2012

[15]基于高光谱维数约简与植被指数估算冬小麦叶面积指数的比较. 付元元,杨贵军,冯海宽,徐新刚,宋晓宇,王纪华. 2012

[16]综合光谱纹理和时序信息的油茶遥感提取研究. 孟浩然,李存军,郑翔宇,宫雨生,刘玉,潘瑜春. 2023

[17]基于无人机数码影像的冬小麦叶面积指数探测研究. 高林,杨贵军,李红军,李振海,冯海宽,王磊,董锦绘,贺鹏. 2016

[18]基于无人机高光谱遥感的冬小麦叶面积指数反演. 高林,杨贵军,于海洋,徐波,赵晓庆,董锦绘,马亚斌. 2016

[19]基于赤池信息量准则的冬小麦叶面积指数高光谱估测. 杨福芹,冯海宽,李振海,高林,杨贵军,戴华阳. 2016

[20]北京山区森林叶面积指数季相变化遥感监测. 石月婵,杨贵军,冯海宽,李伟国,王仁礼. 2012

作者其他论文 更多>>