The Molecular Mechanism of the Response of Rice to Arsenic Stress and Effective Strategies to Reduce the Accumulation of Arsenic in Grain
文献类型: 外文期刊
作者: Geng, Anjing 1 ; Lian, Wenli 1 ; Wang, Yihan 1 ; Liu, Minghao 1 ; Zhang, Yue 1 ; Wang, Xu 1 ; Chen, Guang 1 ;
作者机构: 1.Guangdong Acad Agr Sci, Inst Qual Stand & Monitoring Technol Agroprod, Guangzhou 510640, Peoples R China
2.Minist Agr & Rural Affairs, Key Lab Testing & Evaluat Agroprod Safety & Qual, Guangzhou 510640, Peoples R China
3.Guangdong Prov Key Lab Qual & Safety Risk Assessme, Guangzhou 510640, Peoples R China
关键词: rice; arsenic; molecular mechanism; agronomic practices; biomolecular technology
期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.6; 五年影响因子:6.2 )
ISSN: 1661-6596
年卷期: 2024 年 25 卷 5 期
页码:
收录情况: SCI
摘要: Rice (Oryza sativa L.) is the staple food for more than 50% of the world's population. Owing to its growth characteristics, rice has more than 10-fold the ability to enrich the carcinogen arsenic (As) than other crops, which seriously affects world food security. The consumption of rice is one of the primary ways for humans to intake As, and it endangers human health. Effective measures to control As pollution need to be studied and promoted. Currently, there have been many studies on reducing the accumulation of As in rice. They are generally divided into agronomic practices and biotechnological approaches, but simultaneously, the problem of using the same measures to obtain the opposite results may be due to the different species of As or soil environments. There is a lack of systematic discussion on measures to reduce As in rice based on its mechanism of action. Therefore, an in-depth understanding of the molecular mechanism of the accumulation of As in rice could result in accurate measures to reduce the content of As based on local conditions. Different species of As have different toxicity and metabolic pathways. This review comprehensively summarizes and reviews the molecular mechanisms of toxicity, absorption, transport and redistribution of different species of As in rice in recent years, and the agronomic measures to effectively reduce the accumulation of As in rice and the genetic resources that can be used to breed for rice that only accumulates low levels of As. The goal of this review is to provide theoretical support for the prevention and control of As pollution in rice, facilitate the creation of new types of germplasm aiming to develop without arsenic accumulation or within an acceptable limit to prevent the health consequences associated with heavy metal As as described here.
- 相关文献
作者其他论文 更多>>
-
pOsHAK1:OsSUT1 Promotes Sugar Transport and Enhances Drought Tolerance in Rice
作者:Chen, Guang;Lian, Wenli;Geng, Anjing;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang;Lian, Wenli;Geng, Anjing;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang;Lian, Wenli;Geng, Anjing;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu
关键词:rice; drought tolerance; sugar transport; inducible promoter
-
AflaILVB/G/I and AflaILVD are involved in mycelial production, aflatoxin biosynthesis, and fungal virulence in Aspergillus flavus
作者:Zhao, Yarong;Huang, Chulan;Zeng, Rui;Chen, Peirong;Xu, Kaihang;Huang, Xiaomei;Wang, Xu;Zhao, Yarong;Huang, Chulan;Zeng, Rui;Chen, Peirong;Xu, Kaihang;Huang, Xiaomei;Wang, Xu;Zhao, Yarong;Huang, Chulan;Zeng, Rui;Chen, Peirong;Xu, Kaihang;Huang, Xiaomei;Wang, Xu
关键词:Aspergillus flavus; aflatoxin biosynthesis; branched-chain amino acids; AflaILVB/G/I; AflaILVD; fungal secondary metabolites
-
Influence of humic acid on the bioaccumulation, elimination, and toxicity of PFOS and TBBPA co-exposure in Mytilus unguiculatus Valenciennes
作者:Geng, Qianqian;Zou, Liang;Guo, Mengmeng;Li, Fengling;Qin, Hanlin;Tan, Zhijun;Geng, Qianqian;Liu, Xiangxiang;Wang, Xu;Zou, Liang;Liu, Hong;Wang, Xu;Tan, Zhijun
关键词:Perfluoroalkyl acids; Brominated flame retardant; Dissolved organic matter; Bioconcentration; Mussel; Co-exposure
-
Selenium in soil enhances resistance of oilseed rape to Sclerotinia sclerotiorum by optimizing the plant microbiome
作者:Han, Chuang;Cheng, Qin;Xie, Jiatao;Tang, Yanni;Zhang, Huan;Hu, Chengxiao;Zhao, Xiaohu;Han, Chuang;Du, Xiaoping;Zhao, Xiaohu;Liang, Lianming;Fan, Guocheng;Wang, Xu
关键词:Microbial diversity; oilseed rape; rhizosphere beneficial bacteria; Sclerotinia sclerotiorum; selenium; synthetic community
-
Acid phosphatase involved in phosphate homeostasis in Brassica napus and the functional analysis of BnaPAP10s
作者:Zhang, Hao;He, Xuyou;Munyaneza, Venuste;Zhang, Guangzeng;Ye, Xiangsheng;Wang, Chuang;Shi, Lei;Ding, Guangda;Wang, Xu
关键词:Brassica napus; Purple acid phosphatases; Expression profile; BnaPAP10as; Root-associated APase activity; Phosphate homeostasis
-
Bacteria from the rhizosphere of a selenium hyperaccumulator plant can improve the selenium uptake of a non-hyperaccumulator plant
作者:Zhang, Huan;Yang, Dandan;Hu, Chengxiao;Han, Chuang;Tang, Yanni;Lei, Zheng;Yi, Ceng;Zhao, Xiaohu;Zhang, Huan;Du, Xiaoping;Liang, Lianming;Wang, Xu;Shi, Guangyu
关键词:Selenium; Biofortification; Hyperaccumulator; Rhizosphere bacteria; Root exudates; Isolated bacteria
-
Foliar spraying with a synthetic community of Bacillus increases the selenium content, quality, and contribution to phyllosphere microecology of pakchoi
作者:He, Cixing;Liu, Zhuoyi;Xie, Wenli;Sun, Jing;Xie, Yonghuang;Hu, Chengxiao;Zhao, Xiaohu;He, Cixing;Du, Xiaoping;Liu, Hanliang;Liang, Lianming;Wang, Xu
关键词:Bacillus; Pakchoi; Selenium; Phyllosphere microorganisms; Biofortification; Plant quality