文献类型: 外文期刊
作者: Chen, Guang 1 ; Lian, Wenli 1 ; Geng, Anjing 1 ; Wang, Yihan 1 ; Liu, Minghao 1 ; Zhang, Yue 1 ; Wang, Xu 1 ;
作者机构: 1.Guangdong Acad Agr Sci, Inst Qual Stand & Monitoring Technol Agroprod, Guangzhou 510640, Peoples R China
2.Minist Agr & Rural Affairs, Key Lab Testing & Evaluat Agroprod Safety & Qual, Guangzhou 510640, Peoples R China
3.Guangdong Prov Key Lab Qual & Safety Risk Assessme, Guangzhou 510640, Peoples R China
关键词: rice; drought tolerance; sugar transport; inducible promoter
期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.6; 五年影响因子:6.2 )
ISSN: 1661-6596
年卷期: 2024 年 25 卷 4 期
页码:
收录情况: SCI
摘要: Plant cells accumulate osmotic substances (e.g., sugar) to protect cell components and maintain osmotic balance under drought stress conditions. Previous studies found that pOsHAK1:OsFLN2 promotes sugar metabolism and improves the drought tolerance of rice plants under drought stress. This study further evaluated the effect of the ectopic expression of the OsSUT1 gene driven by the OsHAK1 promoter on the sugar transport and drought tolerance of rice. The results showed that the net photosynthetic rate and sucrose phosphate synthase activity of plants expressing the OsSUT1 gene were not significantly different from those of wild-type (WT) rice plants under drought conditions. However, the sucrose transport rate in the phloem increased in the transgenic plants, and the sucrose contents were significantly lower in the leaves but significantly higher in the roots of transgenic plants than those in WT plants. The pOsHAK1:OsSUT1 and pOsHAK1:OsFLN2 transgenic lines had similar rates of long-distance sucrose transport and drought tolerance, which were higher than those of the WT plants. The relative water content of the transgenic plants was higher, while their water loss rate, hydrogen peroxide (H2O2), and malondialdehyde (MDA) contents were lower than those of the WT plants. The stress-responsive gene OsbZIP23 and the antioxidant-related gene OsCATB were significantly upregulated in the drought-treated transgenic lines, while the senescence indicator gene SGR and the stress-responsive gene OsNAC2 were down-regulated compared to WT plants. These results showed that promoting the long-distance sugar transport through the expression of pOsHAK1:OsSUT1 could produce an improved drought tolerance effect similar to that of pOsHAK1:OsFLN2, providing an effective way to improve the drought tolerance of cereal crops at the seedling stage.
- 相关文献
作者其他论文 更多>>
-
AflaILVB/G/I and AflaILVD are involved in mycelial production, aflatoxin biosynthesis, and fungal virulence in Aspergillus flavus
作者:Zhao, Yarong;Huang, Chulan;Zeng, Rui;Chen, Peirong;Xu, Kaihang;Huang, Xiaomei;Wang, Xu;Zhao, Yarong;Huang, Chulan;Zeng, Rui;Chen, Peirong;Xu, Kaihang;Huang, Xiaomei;Wang, Xu;Zhao, Yarong;Huang, Chulan;Zeng, Rui;Chen, Peirong;Xu, Kaihang;Huang, Xiaomei;Wang, Xu
关键词:Aspergillus flavus; aflatoxin biosynthesis; branched-chain amino acids; AflaILVB/G/I; AflaILVD; fungal secondary metabolites
-
Influence of humic acid on the bioaccumulation, elimination, and toxicity of PFOS and TBBPA co-exposure in Mytilus unguiculatus Valenciennes
作者:Geng, Qianqian;Zou, Liang;Guo, Mengmeng;Li, Fengling;Qin, Hanlin;Tan, Zhijun;Geng, Qianqian;Liu, Xiangxiang;Wang, Xu;Zou, Liang;Liu, Hong;Wang, Xu;Tan, Zhijun
关键词:Perfluoroalkyl acids; Brominated flame retardant; Dissolved organic matter; Bioconcentration; Mussel; Co-exposure
-
Selenium in soil enhances resistance of oilseed rape to Sclerotinia sclerotiorum by optimizing the plant microbiome
作者:Han, Chuang;Cheng, Qin;Xie, Jiatao;Tang, Yanni;Zhang, Huan;Hu, Chengxiao;Zhao, Xiaohu;Han, Chuang;Du, Xiaoping;Zhao, Xiaohu;Liang, Lianming;Fan, Guocheng;Wang, Xu
关键词:Microbial diversity; oilseed rape; rhizosphere beneficial bacteria; Sclerotinia sclerotiorum; selenium; synthetic community
-
Acid phosphatase involved in phosphate homeostasis in Brassica napus and the functional analysis of BnaPAP10s
作者:Zhang, Hao;He, Xuyou;Munyaneza, Venuste;Zhang, Guangzeng;Ye, Xiangsheng;Wang, Chuang;Shi, Lei;Ding, Guangda;Wang, Xu
关键词:Brassica napus; Purple acid phosphatases; Expression profile; BnaPAP10as; Root-associated APase activity; Phosphate homeostasis
-
The Molecular Mechanism of the Response of Rice to Arsenic Stress and Effective Strategies to Reduce the Accumulation of Arsenic in Grain
作者:Geng, Anjing;Lian, Wenli;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang;Geng, Anjing;Lian, Wenli;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang;Geng, Anjing;Lian, Wenli;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang
关键词:rice; arsenic; molecular mechanism; agronomic practices; biomolecular technology
-
Bacteria from the rhizosphere of a selenium hyperaccumulator plant can improve the selenium uptake of a non-hyperaccumulator plant
作者:Zhang, Huan;Yang, Dandan;Hu, Chengxiao;Han, Chuang;Tang, Yanni;Lei, Zheng;Yi, Ceng;Zhao, Xiaohu;Zhang, Huan;Du, Xiaoping;Liang, Lianming;Wang, Xu;Shi, Guangyu
关键词:Selenium; Biofortification; Hyperaccumulator; Rhizosphere bacteria; Root exudates; Isolated bacteria
-
Foliar spraying with a synthetic community of Bacillus increases the selenium content, quality, and contribution to phyllosphere microecology of pakchoi
作者:He, Cixing;Liu, Zhuoyi;Xie, Wenli;Sun, Jing;Xie, Yonghuang;Hu, Chengxiao;Zhao, Xiaohu;He, Cixing;Du, Xiaoping;Liu, Hanliang;Liang, Lianming;Wang, Xu
关键词:Bacillus; Pakchoi; Selenium; Phyllosphere microorganisms; Biofortification; Plant quality