您好,欢迎访问河南省农业科学院 机构知识库!

Ligand-binding properties of odorant-binding protein 6 in Athetis lepigone to sex pheromones and maize volatiles

文献类型: 外文期刊

作者: Li, Lu-Lu 1 ; Huang, Jian-Rong 2 ; Xu, Ji-Wei 1 ; Yao, Wei-Chen 1 ; Yang, Hui-Hui 1 ; Shao, Liang 1 ; Zhang, Hui-Ru 1 ; D 1 ;

作者机构: 1.Huaibei Normal Univ, Coll Life Sci, Anhui Prov Key Lab Pollutant Sensit Mat & Environ, 100 Dongshan Rd, Huaibei 235000, Peoples R China

2.Henan Acad Agr Sci, Inst Plant Protect, MOAs Reg Key Lab Crop IPM Southern Part Northern, Henan Key Lab Crop Pest Control, Zhengzhou 450002, Peoples R China

3.Agr Res Ctr, Cent Agr Pesticide Lab, Phytotox Res Dept, 7 Nadi El Seid St, Giza, Egypt

关键词: noctuid; odorant-binding protein; antennal-binding protein X; sex pheromone; maize; competitive binding assay; site-directed mutagenesis

期刊名称:PEST MANAGEMENT SCIENCE ( 影响因子:4.845; 五年影响因子:4.674 )

ISSN: 1526-498X

年卷期:

页码:

收录情况: SCI

摘要: BACKGROUND: Athetis lepigone, a noctuid moth feeding on more than 30 different crops worldwide, has evolved a sophisticated, sensitive, and specific chemosensory system to detect and discriminate exogenous chemicals. Odorant-binding proteins (OBPs) are the most important agent in insect chemosensory systems to be explored as an alternative target for environmentally friendly approaches to pest management. RESULTS: To investigate the olfactory function of A. lepigone OBPs (AlepOBPs), AlepOBP6 was identified and expressed in Escherichia coli. The binding affinity of the recombinant OBP to 20 different ligands was then examined using a competitive binding approach. The results revealed that AlepOBP6 can bind to two sex pheromones and ten maize volatiles, and its conformation stability is pH dependent. We also carried out a structure-function study using different molecular approaches, including structure modeling, molecular docking, and a mutation functional assay to identify amino acid residues (M39, V68, W106, Q107, and Y114) involved in the binding of AlepOBP6 to both sex pheromones and maize volatiles in A. lepigone. CONCLUSION: These results suggest that AlepOBP6 is likely involved in mediating the responses of A. lepigone to sex pheromones and maize volatiles, which may play a pivotal function in mating, feeding, and oviposition behaviors. This study not only provides new insight into the binding mechanism of OBPs to sex pheromones and host volatiles in moths, but also contributes to the discovery of novel target candidates for developing efficient behavior disruptors to control A. lepigone in the future.

  • 相关文献
作者其他论文 更多>>