您好,欢迎访问广东省农业科学院 机构知识库!

Understanding the role of Fe(III)/Fe(II) couple in mediating reductive transformation of 2-nitrophenol in microbial fuel cells

文献类型: 外文期刊

作者: Feng, Chunhua 2 ; Li, Fangbai 1 ; Sun, Kewen 4 ; Liu, Yongye 3 ; Liu, Liang 1 ; Yue, Xianjun 3 ; Tong, Hui 1 ;

作者机构: 1.Guangdong Inst Ecoenvironm & Soil Sci, Guangdong Key Lab Agr Environm Pollut Integrated, Guangzhou 510650, Guangdong, Peoples R China

2.S China Univ Technol, Sch Environm Sci & Engn, Higher Educ Mega Ctr, Guangzhou 51006, Guangdong, Peoples R China

3.S China Univ Technol, Sch Chem & Chem Engn, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Guangzhou 510640, Guangdong, Peoples R China

4.Wenzhou Med Coll, Inst Hlth & Environm Ecol

关键词: 2-Nitrophenol;Electrochemical mediator;Ferrous iron;Microbial fuel cell;Reductive transformation

期刊名称:BIORESOURCE TECHNOLOGY ( 2020影响因子:9.642; 五年影响因子:9.237 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The Fe(III)/Fe(II) couple can play a significant role in the abiotic reduction of 2-nitrophenol (2-NP) at the cathode chamber of a microbial fuel cell (MFC). Experimental results demonstrate that Fe(II) addition to the cathode chamber contributes to a significant increase in the reaction rate of 2-NP removal and the power performance of MFC. Observed pseudo first-order rate constants and power densities are heavily dependent on the identity of the Fe(II)-complexing ligands. The Fe(II) complex coordinated with citrate results in the highest rate constant up to 0.12h~(-1) as compared to other organically complexed iron species including Fe(II)-EDTA, Fe(II)-acetate and Fe(II)-oxalate, and iron species uncomplexed with any organic ligands. In addition, the presence of Fe(II)-citrate species leads to a maximum volumetric power density of 1.0Wm~(-3), which is the highest value among those obtained with other iron species for the similar MFC system.

  • 相关文献

[1]The effect of ammonium chloride and urea application on soil bacterial communities closely related to the reductive transformation of pentachlorophenol. Yu, Huan-Yun,Chen, Peng-cheng,Li, Fang-bai,Chen, Man-jia,Hu, Min,Wang, Yong-kui.

[2]Effects of dissolved organic matter on adsorbed Fe(II) reactivity for the reduction of 2-nitrophenol in TiO2 suspensions. Zhu, Zhenke,Zhu, Zhenke,Tao, Liang,Li, Fangbai,Zhu, Zhenke. 2013

[3]Fe(II)/Cu(II) interaction on alpha-FeOOH, kaolin and TiO2 for interfacial reactions of 2-nitrophenol reductive transformation. Tao, Liang,Zhu, Zhenke,Li, Fangbai,Zhu, Zhenke,Zhu, Zhenke. 2013

[4]2-Nitrophenol reduction promoted by S-putrefaciens 200 and biogenic ferrous iron: The role of different size-fractions of dissolved organic matter. Zhu, Zhenke,Tao, Liang,Li, Fangbai,Zhu, Zhenke,Zhu, Zhenke. 2014

[5]Reductive transformation of 2-nitrophenol by Fe(II) species in gamma-aluminum oxide suspension. Tao, Liang,Li, Fangbai,Sun, Kewen,Tao, Liang,Sun, Kewen,Feng, Chunhua,Tao, Liang,Sun, Kewen. 2009

[6]Electrochemical evidence of Fe(II)/Cu(II) interaction on titanium oxide for 2-nitrophenol reductive transformation. Tao, Liang,Li, Fangbai. 2012

[7]REDUCTIVE ACTIVITY OF ADSORBED Fe(II) ON IRON (OXYHYDR)OXIDES FOR 2-NITROPHENOL TRANSFORMATION. Tao, Liang,Li, Fangbai,Wang, Yongkui,Tao, Liang,Wang, Yongkui,Sun, Kewen.

[8]Naturally derived carbon nanofibers as sustainable electrocatalysts for microbial energy harvesting: A new application of spider silk. Zhou, Lihua,Fu, Peng,Cai, Xixi,Zhou, Shungui,Yuan, Yong.

[9]Bio-current as an indicator for biogenic Fe(II) generation driven by dissimilatory iron reducing bacteria. Li, Fangbai,Feng, Chunhua,Yue, Xianjun,Wei, Chaohai.

[10]A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Feng, Chunhua,Ma, Le,Mai, Hongjian,Lang, Xuemei,Fan, Shuanshi,Li, Fangbai.

[11]Honeycomb-like hierarchical carbon derived from livestock sewage sludge as oxygen reduction reaction catalysts in microbial fuel cells. Deng, Lifang,Yuan, Haoran,Ruan, Yingying,Chen, Yong,Cai, Xixi,Zhou, Shungui,Yuan, Yong,Deng, Lifang,Yuan, Haoran,Ruan, Yingying.

[12]Arsenite oxidation and removal driven by a bio-electro-Fenton process under neutral pH conditions. Wang, Xiang-Qin,Liu, Chuan-Ping,Yuan, Yong,Li, Fang-bai.

[13]A Simple Method of Improving Microbial Fuel-Cell Performance Based on Polyaniline/Carbon Composite Anodes. Yuan, Yong,Kim, Sunghyun.

[14]Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells. Yuan, Yong,Shin, Hyosul,Kang, Chan,Kim, Sunghyun.

[15]Microbial fuel cell with an azo-dye-feeding cathode. Liu, Liang,Li, Fang-bai,Liu, Liang,Feng, Chun-hua,Li, Xiang-zhong,Liu, Liang.

[16]In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria. Liu, Liang,Yuan, Yong,Li, Fang-bai,Liu, Liang,Feng, Chun-hua,Liu, Liang.

[17]Electricity generation from starch processing wastewater using microbial fuel cell technology. Lu, Na,Zhang, Jin-tao,Ni, Jin-ren,Lu, Na,Zhou, Shun-gui,Zhang, Jin-tao.

作者其他论文 更多>>