The Nonstructural Protein 1 Papain-Like Cysteine Protease Was Necessary for Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 1 to Inhibit Interferon-beta Induction
文献类型: 外文期刊
作者: Shi, Xibao 1 ; Zhang, Gaiping 1 ; Wang, Li 1 ; Li, Xuewu 1 ; Zhi, Yubao 1 ; Wang, Fangyu 1 ; Fan, Jianming 1 ; Deng, Ruig 1 ;
作者机构: 1.Henan Acad Agr Sci, Henan Prov Key Lab Anim Immunol, Zhengzhou 450002, Peoples R China
2.Zhengzhou Univ, Coll Publ Hlth, Toxicol Lab, Zhengzhou, Peoples R China
关键词: nonstructural protein-1;papain-like cysteine protease: 37353-41-6;interferon-beta: IFN-beta;74899-71-1;production;induction;nonstructural protein-1-alpha;nonstructural protein-1-beta;enzyme activity
期刊名称:DNA AND CELL BIOLOGY ( 影响因子:3.311; 五年影响因子:3.557 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Porcine reproductive and respiratory syndrome virus nonstructural protein 1 (nsp1) could be auto-cleaved into nsp1 alpha and nsp1 beta, both of which had the papain-like cysteine protease activities. Previous studies have shown that porcine reproductive and respiratory syndrome virus nsp1 was an interferon (IFN) antagonist. However, the mechanism by which nsp1 inhibited IFN-beta production was unclear. Here, we used site-directed mutagenesis that inactivated the papain-like cysteine protease activities of nsp1 to explore whether the papain-like cysteine protease activities were required for nsp1 to disrupt IFN-beta production. The results showed that mutations that inactivated papain-like cysteine protease activity of nsp1 alpha made nsp1 lose its IFN antagonism activity, whereas mutations that inactivated papain-like cysteine protease activity of nsp1 beta did not influence the IFN antagonism activity of nsp1. In conclusion, our present work indicated that the papain-like cysteine protease activity of nsp1 alpha was necessary for nsp1 to inhibit IFN-beta induction.
- 相关文献
作者其他论文 更多>>
-
Potential Pathogenicity and Genetic Characteristics of a Live-Attenuated Classical Swine Fever Virus Vaccine Derivative Variant
作者:Guo, Zhenhua;Xing, Guangxu;Jin, Qianyue;Lu, Qingxia;Zhang, Gaiping;Wang, Leyi;Wang, Leyi;Zhang, Gaiping;Zhang, Gaiping
关键词:
-
Proteomic analysis reveals the antiviral effects of baicalin on pseudorabies virus
作者:Niu, Qiaoge;Zhang, Gaiping;Niu, Qiaoge;Zhou, Chuanjie;Li, Rui;Guo, Junqing;Qiao, Songlin;Chen, Xin-xin;Zhang, Gaiping;Zhang, Gaiping
关键词:Baicalin; Pseudorabies virus; ROS; F3; NFU1; CEBPB
-
Marine peptides as potential anti-aging agents: Preparation, characterization, mechanisms of action, and future perspectives
作者:Yao, Wanzi;Zhang, Yifeng;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping
关键词:Marine peptides; Anti-aging; Preparation; Mechanisms; Oxidative stress; Signaling pathways
-
Thiolated chitosan encapsulation constituted mucoadhesive nanovaccine confers broad protection against divergent influenza A viruses
作者:Ding, Peiyang;Liu, Hongliang;Zhu, Xifang;Chen, Yumei;Zhou, Jingming;Wang, Aiping;Zhang, Gaiping;Ding, Peiyang;Liu, Hongliang;Zhu, Xifang;Chen, Yumei;Zhou, Jingming;Wang, Aiping;Zhang, Gaiping;Ding, Peiyang;Liu, Hongliang;Zhu, Xifang;Chen, Yumei;Zhou, Jingming;Wang, Aiping;Zhang, Gaiping;Chai, Shujun;Zhang, Gaiping;Zhang, Gaiping
关键词:Mucoadhesive; Thiolated chitosan; Influenza nanovaccine; M2e; Nucleoprotein
-
Identification of the Linear Fc-Binding Site on the Bovine IgG1 Fc Receptor (boFcγRIII) Using Synthetic Peptides
作者:Wang, Ruining;Guo, Junqing;Yang, Jifei;Li, Qingmei;Zhang, Gaiping;Wang, Ruining;Li, Ge;Wang, Xun;Zhang, Gaiping;Zhang, Gaiping
关键词:BoFc gamma RIII; Fc-binding site; bovine IgG1; synthetic peptides
-
Enhancing humoral and mucosal immune response of PED vaccine candidate by fusing S1 protein to nanoparticle multimerization
作者:Li, Minghui;Sun, Xueke;Wang, Siqiao;Wang, Yanan;Wang, Yue;Zhang, Gaiping;Li, Minghui;Sun, Xueke;Chen, Yilan;Wang, Siqiao;Li, Qin;Wang, Yanan;Wang, Yue;Li, Ruiqi;Zhang, Gaiping;Ding, Peiyang;Zhang, Gaiping;Ding, Peiyang;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping
关键词:PEDV; S1 protein; Nanoparticle; Subunit vaccine; Mucosal immunity
-
The Myb73-GDPD2-GA2ox1 transcriptional regulatory module confers phosphate deficiency tolerance in soybean
作者:Hu, Dandan;Cui, Ruifan;Wang, Ke;Yang, Yuming;Wang, Ruiyang;Zhu, Hongqing;He, Mengshi;Fan, Yukun;Chu, Shanshan;Zhang, Jinyu;Zhang, Shanshan;Yang, Yifei;Zhai, Xuhao;Lu, Haiyan;Zhang, Dan;Wang, Le;Zhang, Hengyou;Wang, Li;Yu, Deyue;Zhang, Dandan;Wang, Jinshe;Kong, Fanjiang
关键词: