您好,欢迎访问浙江省农业科学院 机构知识库!

Expression of defense genes and activities of antioxidant enzymes in rice resistance to rice stripe virus and small brown planthopper

文献类型: 外文期刊

作者: Hao, Zhongna 1 ; Wang, Lianping 1 ; He, Yueping 1 ; Liang, Jiangen 1 ; Tao, Rongxiang 1 ;

作者机构: 1.Zhejiang Acad Agr Sci, Inst Plant Protect & Microbiol, Hangzhou 310021, Zhejiang, Peoples R China

关键词: Antioxidant response;Defense gene;Oryza sativa;Rice stripe virus;Small brown planthopper

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The rice variety Tai06-1 is resistant to rice stripe disease and Xiushui63 is a highly susceptible rice variety to this disease. These two varieties were used to analyze the expression patterns of defense genes and antioxidant defense responses at the seedling stage, upon feeding with viruliferous small brown planthopper (SBPH) and nonviruliferous SBPH, respectively. The expression levels of CP (coat protein) gene of rice stripe virus (RSV) were higher upon feeding with viruliferous SBPH in Xiushui63 than in Tai06-1 throughout most of the experimental period, suggesting that RSV replicaiton is disturbed in Tai06-1 but not in Xiushui63, therefore, the resistance to RSV is higher in Tai06-1 than in Xiuhsui63. We found that defense genes PR1a (pathogenesis-related class 1a), PAL (phenylalanine ammonia-lyase), and CHS (chalcone synthase) may play roles in the defense responses to both RSV and SBPH in Tai06-1, and PR4 and PR10a may only participate in defending against SBPH attack but not against RSV infection in Tai06-1. Our data reveal that Gns1 (1,3; 1,4-β-glucanase) may participate in the defense responses to both RSV and SBPH in Xiushui63 but not in Tai06-1, and LOX (lipoxygenase) may only participate in defending against to SBPH in both Tai06-1 and Xiushui63. The antioxidant enzymes superoxide dismutase, peroxidase, catalase, hydrogen peroxide, and malondialdehyde coordinately participate in the resistance to RSV in Tai06-1, and that oxidative damage is less in Tai06-1 than in Xiushui63.

  • 相关文献

[1]Expression of defense genes and antioxidant defense responses in rice resistance to neck blast at the preliminary heading stage and full heading stage. Hao, Zhongna,Wang, Lianping,Tao, Rongxiang,Huang, Fudeng.

[2]Expression patterns of defense genes in resistance of the panicles exserted from the caulis and from the tillers to neck blast in rice. Hao, Zhongna,Wang, Lianping,Tao, Rongxiang,Huang, Fudeng.

[3]Comparative Proteomic Analysis of Susceptible and Resistant Rice Plants during Early Infestation by Small Brown Planthopper. Chen, Jianping,Dong, Yan,Yang, Yong,Wang, Xuming,Yu, Chulang,Zhou, Jie,Yan, Chengqi,Chen, Jianping,Fang, Xianping,Fang, Xianping,Xue, Gang-Ping,Chen, Xian,Zhang, Weilin,Mei, Qiong,Fang, Wang. 2017

[4]Small brown planthopper resistance loci in wild rice (Oryza officinalis). Zhang, Weilin,Yang, Ling,Ma, Bojun,Wang, Changchun,Hu, Haitao,Dong, Yan,Huang, Fudeng,Li, Chunshou,Ma, Rongrong,Yan, Chengqi,Chen, Jianping.

[5]Transcriptome Analysis Reveals the Response of Iron Homeostasis to Early Feeding by Small Brown Planthopper in Rice. Zhang, Weilin,Yang, Ling,Ma, Bojun,Meng, Hongyu,Li, Mei,Yang, Chengqi,Xie, Li,Chen, Jianping.

[6]Over-expression of Oryza sativa Xrn4 confers plant resistance to virus infection. Jiang, Shanshan,Jiang, Liangliang,Jiang, Shanshan,Yang, Jian,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei,Yang, Jian,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei. 2018

[7]Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. Tong, Aizi,Yuan, Quan,Wang, Shu,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei,Tong, Aizi,Chen, Hairu,Yuan, Quan,Gong, Yifu,Wang, Shu. 2017

[8]Transcription of ORFs on RNA2 and RNA4 of Rice stripe virus terminate at an AUCCGGAU sequence that is conserved in the genus Tenuivirus. Wu, Gentu,Wu, Gentu,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Yan, Fei,Chen, Jianping.

[9]Heat shock protein 70 is necessary for Rice stripe virus infection in plants. Jiang, Shanshan,Li, Kunfeng,Lin, Lin,Zheng, Hongying,Chen, Jianping,Jiang, Shanshan,Lu, Yuwen,Li, Kunfeng,Yan, Fei,Chen, Jianping.

[10]Transgenic rice expressing rice stripe virus NS3 protein, a suppressor of RNA silencing, shows resistance to rice blast disease. Wu, Gentu,Wu, Gentu,Wang, Jiaoyu,Yang, Yong,Dong, Bo,Wang, Yanli,Sun, Guochang,Yan, Chengqi,Yan, Fei,Chen, Jianping,Wang, Jiaoyu,Wang, Yanli,Sun, Guochang,Yang, Yong,Dong, Bo,Yan, Chengqi,Yan, Fei,Chen, Jianping.

[11]A transmembrane domain determines the localization of rice stripe virus pc4 to plasmodesmata and is essential for its function as a movement protein. Rong, Lingling,Lu, Yuwen,Lin, Lin,Zheng, Hongying,Yan, Fei,Chen, Jianping.

[12]Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants. Xu, H. X.,Weng, X. Y.,Yang, Y.. 2007

[13]Expression patterns of defence genes and antioxidant defence responses in a rice variety that is resistant to leaf blast but susceptible to neck blast. Hao, Zhong N.,Wang, Lian P.,Tao, Rong X.. 2009

[14]Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Wang, Dekai,Pei, Kemei,Fu, Yaping,Sun, Zongxiu,Li, Sujuan,Liu, Heqin,Tang, Kan,Han, Bin,Tao, Yuezhi. 2007

[15]OspTAC2 encodes a pentatricopeptide repeat protein and regulates rice chloroplast development. Wang, Dekai,Liu, Heqin,Zhai, Guowei,Shao, Jianfeng,Tao, Yuezhi,Wang, Dekai,Liu, Heqin,Zhai, Guowei,Shao, Jianfeng,Tao, Yuezhi,Wang, Liangsheng. 2016

[16]Comparison between the resistance to blast in panicles exserted from the main culm and primary tillers as measured in six rice varieties. Hao, Zhongna,Wang, Lianping,Tao, Rongxiang,Li, Chunshou,Huang, Fudeng. 2014

[17]Influences of the disease resistance conferred by the individual transgenes, Pi-d2, Pi-d3 and Xa21, on the transgenic rice plants in yield and grain quality. Hao, Z. N.,Wang, L. P.,Tao, R. X.,Wang, J.,Wang, J.. 2009

[18]A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice (Oryza sativa L.). Jin, QS,Waters, D,Cordeiro, GM,Henry, RJ,Reinke, RF.

[19]Rice ragged stunt oryzavirus: role of the viral spike protein in transmission by the insect vector. Zhou, GY,Lu, XB,Lu, HJ,Lei, JL,Chen, SX,Gong, ZX.

[20]A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. Chen, Jie,Shi, Yongfeng,Liu, Wenzheng,Fu, Yaping,Zhuang, Jieyun,Wu, Jianli,Chai, Rongyao. 2011

作者其他论文 更多>>