Bibliometric analysis of research trends in agricultural soil organic carbon components from 2000 to 2023
文献类型: 外文期刊
作者: Ge, Guolong 1 ; Chen, Xuanyi 1 ; Ma, Hexiao 1 ; Zhang, Xiangqian 2 ; Shi, Jingjing 1 ; Wang, Xiaoxiang 1 ; Zhao, Xiaoqing 2 ; Wang, Manxiu 1 ; Xian, Feng 4 ; Lu, Zhanyuan 1 ; Cheng, Yuchen 2 ;
作者机构: 1.Inner Mongolia Univ, Sch Life Sci, Hohhot, Peoples R China
2.Inner Mongolia Acad Agr & Anim Husb Sci, Hohhot, Peoples R China
3.Minist Agr & Rural Affairs, Key Lab Black Soil Protect & Utilizat Hohhot, Hohhot, Peoples R China
4.Inner Mongolia Univ Sci & Technol, Baotou Teachers Univ, Sch Life Sci, Baotou, Peoples R China
关键词: soil organic carbon component; bibliometrics; visualization analysis; land-use pattern; CiteSpace
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:4.8; 五年影响因子:5.7 )
ISSN: 1664-462X
年卷期: 2024 年 15 卷
页码:
收录情况: SCI
摘要: Soil organic carbon is a vital component of the soil carbon pool. Investigation of its composition and dynamics is crucial for enhancing carbon sequestration in soils and for stabilizing the global carbon cycle. In recent years, considerable research has focused on the interactions between soil organic carbon components and their responses to varied land use and agricultural practices. However, the mechanism of soil organic carbon sequestration and response characteristics of soil organic carbon components to soil carbon pools are still subject to some debate. To the best of our knowledge, no researchers have used bibliometric analyses to explore the field of soil organic carbon components. This study thus involved the use of bibliometric techniques to identify research hotspots in the study of organic carbon components over the last 23 years and future trends in research development. Specifically, we performed a comprehensive literature review of 607 documents pertaining to organic carbon components using the Web of Science database, covering the period from 2000 to 2023. Employing CiteSpace, we visualized and analyzed the data across national, institutional, disciplinary, and keyword dimensions. In this study, we conducted a comprehensive, systematic, and quantitative analysis of publications pertaining to organic carbon component research. The results indicate that researchers in the United States and China have substantially influenced the study of soil organic carbon components. Since 2000, the United States has pioneered the study of soil organic carbon components, establishing a foundational role in this field of research. Meanwhile, China leads with the largest number of publications and the most diverse research directions in this field. Among the institutions involved in such research, the University of Chinese Academy of Sciences has the highest number of publications. The investigation of soil organic carbon components within agricultural systems is inherently multidisciplinary, with the most comprehensive research being performed within the soil sciences discipline. At present, the focal areas of research on soil organic carbon components predominantly revolve around the impacts of straw return to fields, varying land-use changes, restoration of vegetation, and the reciprocal effects of soil organic carbon components on the restoration of vegetation. The findings of this work highlight the research hotspots within the field of soil organic carbon components and the emerging trends within this field. This work offers novel insights into the dynamics of soil organic carbon components, potentially guiding future studies in this vital field.
- 相关文献
作者其他论文 更多>>
-
Effects of Different Tillage Measures Combined with Straw Returning on Soil Enzyme Activity and Microbial Community Structure and Diversity
作者:Xiao, Sa;Li, Bing;Zhang, Tingting;Luo, Jianzhu;Wang, Jie;Li, Juan;Zhang, Dejian;Xiao, Sa;Li, Bing;Zhang, Tingting;Luo, Jianzhu;Wang, Jie;Li, Juan;Zhang, Dejian;Zhang, Xiangqian
关键词:tillage methods; straw returning; enzyme activity; microbial biomass; microbial diversity
-
Assessing the ecological effects of the World's Largest Forestry Eco-engineering: Three-North Protective Forest Program within the initially scheduled range from 1978 to 2022
作者:Zheng, Xiao;Zhu, Jiaojun;Wang, G. Geoff;Yan, Qiaoling;Sun, Tao;Song, Lining;Gao, Tian;Sun, Yirong;Yang, Kai;Zhang, Jinxin;Yu, Lizhong;Qi, Ke;Zhao, Lanlin;Lu, Deliang;Zheng, Xiao;Zhu, Jiaojun;Yan, Qiaoling;Sun, Tao;Song, Lining;Gao, Tian;Sun, Yirong;Yang, Kai;Zhang, Jinxin;Yu, Lizhong;Qi, Ke;Lu, Deliang;Wang, G. Geoff;Li, Xiufen;Zhao, Lanlin;Lu, Zhanyuan
关键词:Three-North Program; northern China; protective forest; ecological impacts; 45 years
-
Degradable film mulching recruited beneficial microbiota and increased rhizosphere bacterial diversity in sunflower
作者:Meng, Tiantian;Lu, Zhanyuan;Meng, Tiantian;Zhang, Xiangqian;Zhang, Jianwei;Lu, Zhanyuan;Zhao, Xiaoyu;Bu, Hengtong;Chen, Xuanyi;Zhao, Min;Zhang, Dejian;Lu, Zhanyuan;Wang, Weini;Liu, Junmei;Zhang, Xiangqian;Lu, Zhanyuan
关键词:Degradation film; Sunflower; Root niche; Microbial community assembly; Yield
-
Cry for help from rhizosphere microbiomes and self-rescue strategies cooperatively alleviate drought stress in spring wheat
作者:Fang, Jing;Ma, Jie;Wei, Shuli;Su, Shaofeng;Cheng, Yuchen;Zhao, Xiaoqing;Lu, Zhanyuan;Fang, Jing;Ma, Jie;Zhao, Xiaoqing;Lu, Zhanyuan;Wen, Tao;Niu, Guoqing;Yuan, Jun;Yi, Liuxi
关键词:Drought stress; Spring wheat; Rhizosphere microbiome; Root exudate; Root transcriptome; Cross-domain network
-
ggClusterNet 2: An R package for microbial co-occurrence networks and associated indicator correlation patterns
作者:Wen, Tao;Liu, Lanlan;Niu, Guoqing;Ding, Zhexu;Teng, Xinyang;Yang, Shengdie;Xie, Penghao;Zhang, Tianjiao;Shen, Qirong;Yuan, Jun;Liu, Yong-Xin;Ma, Jie;Liu, Ying;Zhang, Tianjiao;Lu, Zhanyuan;Wang, Lei
关键词:microbial co-occurrence networks; modularity; multi-omics network; multi-network comparison; network visualization; transkingdom networks
-
Combined transcriptomic and metabolomic analysis revealed the salt tolerance mechanism of Populus talassica x Populus euphratica
作者:Liu, Ying;Su, Mengxu;Liu, Meilin;Wu, Jiaju;Wu, Xiaofeng;Han, Zhanjiang;Liu, Ying;Zhao, Xiaoqing;Lu, Zhanyuan;Zhao, Xiaoqing;Lu, Zhanyuan
关键词:
Populus. talassica xPopulus. euphratica seedlings; NaCl treatment; Differentially expressed genes (DEGs); Differentially accumulated metabolites (DAMs); Metabolic pathways -
Can quinoa (Chenopodium quinoa) replace traditional cereals under current climate scenarios?
作者:Sun, Hongju;Lu, Zhanyuan;Sun, Hongju;Khan, Waqas ud Din;Tanveer, Mohsin;Khan, Waqas ud Din;Shabala, Sergey;Khan, Waqas ud Din;Ijaz, Usman;Lu, Zhanyuan;Lu, Zhanyuan;Shabala, Sergey
关键词:salinity; drought; food security; climate change; abiotic stress; adaptation



