A deep learning framework for crop mapping with reconstructed Sentinel-2 time series images
文献类型: 外文期刊
作者: Feng, Fukang 1 ; Gao, Maofang 1 ; Liu, Ronghua 2 ; Yao, Shuihong 1 ; Yang, Guijun 3 ;
作者机构: 1.Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, State Key Lab Efficient Utilizat Arid & Semi Arid, Beijing 100081, Peoples R China
2.China Agr Univ, Coll Land Sci & Technol, Beijing, Peoples R China
3.Changan Univ, Coll Geol Engn & Geomat, Xian 710054, Peoples R China
4.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
关键词: Crop mapping; Attention; Bidirectional gated recurrent unit; Time-series; Deep learning
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.3; 五年影响因子:8.3 )
ISSN: 0168-1699
年卷期: 2023 年 213 卷
页码:
收录情况: SCI
摘要: Timely and accurate access to regional scale crop plant area and spatial distribution is essential for regional agricultural production and food security, especially in the context of global population growth and climate change. Deep learning has become prevalent in crop mapping under complex conditions due to its powerful feature extraction and nonlinear ability. This study proposes a time-series image classification framework using Attention-based Bidirectional Gated Recurrent Unit (A-BiGRU) to map rice, maize, and soybean in Fujin, China, from reconstructed Sentinel-2 time-series images. Firstly, the reconstructed Sentinel-2 time-series images with 10 spectral dimensions and 22 temporal dimensions were obtained by linear interpolation and Savitzky-Golay (SG) filter. Then, a neural network, the A-BiGRU was developed to identify different crops by taking advantage of their unique growth patterns. The attention mechanism enables temporal neural networks to focus on the critical growth periods of crops. Additionally, the structure of GRU is simpler than that of long short-term memory (LSTM) and simple recurrent neural network (SRNN), which reduces the number of parameters and alleviates overfitting. Compared to GRU, BiGRU can fully uses the time-series information of the entire crop growth cycle. To assess the effectiveness of the proposed method, we compared two deep learning methods (LSTM and SRNN) and three widely used non-deep learning classifiers (Spectral Angle Mapping (SAM), Support Vector Machine (SVM)) and eXtreme Gradient Boosting (XGBoost). The results demonstrate that A-BiGRU achieved the highest accuracy, with an overall accuracy of 0.9804, a macro F1 score of 0.9788 and a kappa score of 0.9714. We also selected four typical regions and compared the classification results with optical images, which showed that the proposed method has a good recognition effect. Therefore, the A-BiGRU method is capable of achieving highprecision crop mapping.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response
-
Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning
作者:Yue, Jibo;Wang, Jian;Guo, Wei;Ma, Xinming;Qiao, Hongbo;Yang, Guijun;Liu, Yang;Feng, Haikuan;Yue, Jibo;Yang, Guijun;Li, Changchun;Niu, Qinglin;Feng, Haikuan
关键词:Unmanned aerial vehicle; Transfer learning; Deep learning; Hyperspectral
-
Overridingly increasing vegetation sensitivity to vapor pressure deficit over the recent two decades in China
作者:Liu, Miao;Yang, Guijun;Li, Zhenhong;Gao, Meiling;Yang, Yun;Liu, Miao;Yang, Guijun;Long, Huiling;Meng, Yang;Hu, Haitang;Li, Heli;Yuan, Wenping;Li, Changchun;Yuan, Zhanliang;Meng, Yang
关键词:Vapor pressure deficit (VPD); Aridity index (AI); EVI; NIRv; Vegetation; Sensitivity



