A deep learning framework for crop mapping with reconstructed Sentinel-2 time series images
文献类型: 外文期刊
作者: Feng, Fukang 1 ; Gao, Maofang 1 ; Liu, Ronghua 2 ; Yao, Shuihong 1 ; Yang, Guijun 3 ;
作者机构: 1.Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, State Key Lab Efficient Utilizat Arid & Semi Arid, Beijing 100081, Peoples R China
2.China Agr Univ, Coll Land Sci & Technol, Beijing, Peoples R China
3.Changan Univ, Coll Geol Engn & Geomat, Xian 710054, Peoples R China
4.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
关键词: Crop mapping; Attention; Bidirectional gated recurrent unit; Time-series; Deep learning
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.3; 五年影响因子:8.3 )
ISSN: 0168-1699
年卷期: 2023 年 213 卷
页码:
收录情况: SCI
摘要: Timely and accurate access to regional scale crop plant area and spatial distribution is essential for regional agricultural production and food security, especially in the context of global population growth and climate change. Deep learning has become prevalent in crop mapping under complex conditions due to its powerful feature extraction and nonlinear ability. This study proposes a time-series image classification framework using Attention-based Bidirectional Gated Recurrent Unit (A-BiGRU) to map rice, maize, and soybean in Fujin, China, from reconstructed Sentinel-2 time-series images. Firstly, the reconstructed Sentinel-2 time-series images with 10 spectral dimensions and 22 temporal dimensions were obtained by linear interpolation and Savitzky-Golay (SG) filter. Then, a neural network, the A-BiGRU was developed to identify different crops by taking advantage of their unique growth patterns. The attention mechanism enables temporal neural networks to focus on the critical growth periods of crops. Additionally, the structure of GRU is simpler than that of long short-term memory (LSTM) and simple recurrent neural network (SRNN), which reduces the number of parameters and alleviates overfitting. Compared to GRU, BiGRU can fully uses the time-series information of the entire crop growth cycle. To assess the effectiveness of the proposed method, we compared two deep learning methods (LSTM and SRNN) and three widely used non-deep learning classifiers (Spectral Angle Mapping (SAM), Support Vector Machine (SVM)) and eXtreme Gradient Boosting (XGBoost). The results demonstrate that A-BiGRU achieved the highest accuracy, with an overall accuracy of 0.9804, a macro F1 score of 0.9788 and a kappa score of 0.9714. We also selected four typical regions and compared the classification results with optical images, which showed that the proposed method has a good recognition effect. Therefore, the A-BiGRU method is capable of achieving highprecision crop mapping.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model
-
Retrieving the chlorophyll content of individual apple trees by reducing canopy shadow impact via a 3D radiative transfer model and UAV multispectral imagery
作者:Zhang, Chengjian;Chen, Zhibo;Chen, Riqiang;Zhang, Wenjie;Zhang, Chengjian;Chen, Riqiang;Zhang, Wenjie;Zhao, Dan;Yang, Guijun;Xu, Bo;Feng, Haikuan;Yang, Hao
关键词:Chlorophyll content; Shadows; Vegetation index (VI); Radiative transfer models (RTMs); Hybrid inversion model; Individual apple tree crown



