Precise 3D geometric phenotyping and phenotype interaction network construction of maize kernels
文献类型: 外文期刊
作者: Zhao, Shuaihao 1 ; Huang, Guanmin 1 ; Yang, Si 1 ; Wang, Chuanyu 1 ; Wang, Juan 1 ; Zhao, Yanxin 3 ; Duan, Minxiao 3 ; Zhang, Ying 1 ; Guo, Xinyu 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing, Peoples R China
2.China Natl Engn Res Ctr Informat Technol Agr, Beijing Key Lab Digital Plant, Beijing, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Maize Res Ctr, Beijing Key Lab Maize DNA DeoxyriboNucle Acid Fing, Beijing, Peoples R China
关键词: maize kernels; plant phenomics; 3D point cloud model; phenotypic analysis; phenome interaction network
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:4.8; 五年影响因子:5.7 )
ISSN: 1664-462X
年卷期: 2025 年 16 卷
页码:
收录情况: SCI
摘要: Accurate identification of maize kernel morphology is crucial for breeding and quality improvement. Traditional manual methods are limited in dealing with complex structures and cannot fully capture kernel characteristics from a phenome perspective. To address this, our study aims to develop a high-throughput 3D phenotypic analysis method for maize kernels using Micro-CT-based point cloud data, thereby enhancing both accuracy and efficiency. We introduced new phenotypic indicators and developed a kernel phenome interaction network to better characterize the diversity and variability of kernel traits. Using a natural population of maize, high-resolution 2D slice data from Micro-CT scans were converted into 3D point cloud models for detailed analysis. This process led to the proposal of five new indicators, such as the endosperm density uniformity index (ENDUI) and endosperm integrity index (ENII), and the construction of their corresponding phenome interaction network. The study identified 27 3D morphological feature parameters, significantly improving the accuracy of kernel phenotypic analysis. These new indicators enable a more comprehensive evaluation of trait differences between subgroups. Results show that ENDUI and ENII are central to the phenome interaction networks, revealing synergistic relationships and environmental adaptation strategies during kernel growth. Additionally, it was found that length traits significantly impact the volumes of the embryo and endosperm, with linear regression coefficients of 0.599 and 0.502, respectively. This study not only advances maize kernel morphology research but also offers a novel method for phenotypic analysis. By enriching the phenotypic diversity of maize kernels, it contributes to breeding programs and grain processing improvements, ultimately enhancing the quality, and utilization value of maize kernels.
- 相关文献
作者其他论文 更多>>
-
LettuceP3D: A tool for analysing 3D phenotypes of individual lettuce plants
作者:Ge, Xiaofen;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Wu, Sheng;Wen, Weiliang;Shen, Fei
关键词:Lettuce; Point cloud segmentation; Deep learning; Phenotypic analysis algorithm
-
3D time-series phenotyping of lettuce in greenhouses
作者:Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu;Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Lu, Xianju;Fan, Jiangchuan;Zhang, Minggang;Liang, Yuqiang;Gu, Shenghao;Guo, Xinyu
关键词:Time-series; 3D phenotyping; Rail-driven phenotyping platform; Lettuce; Greenhouse
-
Comprehensive review on 3D point cloud segmentation in plants
作者:Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli
关键词:Plant; Three-dimensional; Point cloud; Segmentation; Multi-scale; Deep learning
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding
-
Three-Dimensional Time-Series Monitoring of Maize Canopy Structure Using Rail-Driven Plant Phenotyping Platform in Field
作者:Ma, Hanyu;Zhang, Dongsheng;Wen, Weiliang;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu;Wen, Weiliang;Gou, Wenbo;Liang, Yuqiang;Zhang, Minggang;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu
关键词:maize canopy; time-series phenotype; 3D point cloud; plot segmentation; marginal effect
-
Water phase distribution and its dependence on internal structure in soaking maize kernels: a study using low-field nuclear magnetic resonance and X-ray micro-computed tomography
作者:Wang, Baiyan;Zhao, Chunjiang;Wang, Baiyan;Gu, Shenghao;Wang, Juan;Wang, Guangtao;Guo, Xinyu;Zhao, Chunjiang
关键词:phenotyping; hydration; water absorption; seed emergence; kernel moisture
-
Analysis of stomatal characteristics of maize hybrids and their parental inbred lines during critical reproductive periods
作者:Zhang, Changyu;Jin, Yu;Wang, Jinglu;Zhang, Ying;Lu, Xianju;Guo, Xinyu;Zhang, Changyu;Jin, Yu;Wang, Jinglu;Zhang, Ying;Lu, Xianju;Guo, Xinyu;Zhao, Yanxin;Song, Wei
关键词:maize; hybrids; stomatal phenotypes; high-throughput acquisition; deep learning



