Multi-Source Data Fusion Improves Time-Series Phenotype Accuracy in Maize under a Field High-Throughput Phenotyping Platform
文献类型: 外文期刊
作者: Li, Yinglun 1 ; Wen, Weiliang 1 ; Fan, Jiangchuan 1 ; Gou, Wenbo 1 ; Gu, Shenghao 1 ; Lu, Xianju 1 ; Yu, Zetao 2 ; Wang, Xiaodong 2 ; Guo, Xinyu 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing Key Lab Digital Plant, Beijing 100097, Peoples R China
期刊名称:PLANT PHENOMICS ( 影响因子:6.5; 五年影响因子:7.5 )
ISSN: 2643-6515
年卷期: 2023 年 2023 卷
页码:
收录情况: SCI
摘要: The field phenotyping platforms that can obtain high-throughput and time-series phenotypes of plant populations at the 3-dimensional level are crucial for plant breeding and management. However, it is difficult to align the point cloud data and extract accurate phenotypic traits of plant populations. In this study, high-throughput, time-series raw data of field maize populations were collected using a field railbased phenotyping platform with light detection and ranging (LiDAR) and an RGB (red, green, and blue) camera. The orthorectified images and LiDAR point clouds were aligned via the direct linear transformation algorithm. On this basis, time-series point clouds were further registered by the time-series image guidance. The cloth simulation filter algorithm was then used to remove the ground points. Individual plants and plant organs were segmented from maize population by fast displacement and region growth algorithms. The plant heights of 13 maize cultivars obtained using the multi-source fusion data were highly correlated with the manual measurements (R2 = 0.98), and the accuracy was higher than only using one source point cloud data (R2 = 0.93). It demonstrates that multi-source data fusion can effectively improve the accuracy of time series phenotype extraction, and rail-based field phenotyping platforms can be a practical tool for plant growth dynamic observation of phenotypes in individual plant and organ scales.
- 相关文献
作者其他论文 更多>>
-
Three-Dimensional Modeling of Maize Canopies Based on Computational Intelligence
作者:Wu, Yandong;Xiao, Pengliang;Huang, Linsheng;Wu, Yandong;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Xiao, Pengliang;Guo, Xinyu;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Guo, Xinyu;Huang, Guanmin;Lu, Xianju
关键词:
-
Plant microphenotype: from innovative imaging to computational analysis
作者:Zhang, Ying;Gu, Shenghao;Du, Jianjun;Huang, Guanmin;Lu, Xianju;Wang, Jinglu;Guo, Xinyu;Zhao, Chunjiang;Shi, Jiawei;Yang, Wanneng
关键词:computational phenotyping; genetic effects; imaging technique; microphenotype; trait identification
-
The alleviative effect of C-phycocyanin peptides against TNBS-induced
作者:Wen, Weiliang;Wu, Sheng;Gu, Shenghao;Guo, Xinyu;Wen, Weiliang;Lu, Xianju;Wu, Sheng;Lu, Xianju;Liu, Xiang;Gu, Shenghao;Guo, Xinyu;Wu, Sheng;Liu, Xiang;Gu, Shenghao;Guo, Xinyu
关键词:Three-dimensional point cloud; Semantic reconstruction; Maize leaf; Plant phenotyping
-
Molecularly Imprinted Polymer-Based Electrochemical Sensor for In Situ Detection of Free Proline in Cucumber Leaves
作者:Yan, Lucheng;Luo, Bin;Wang, Cheng;Dong, Hongtu;Wang, Xiaodong;Hou, Peichen;Liu, Ke;Li, Aixue;Yan, Lucheng
关键词:proline; screen-printed electrodes; molecularly imprinted polymers; electrochemical biosensors; in situ
-
3D Reconstruction of Wheat Plants by Integrating Point Cloud Data and Virtual Design Optimization
作者:Gu, Wenxuan;Guo, Xinyu;Wen, Weiliang;Wu, Sheng;Lu, Xianju;Guo, Xinyu;Wen, Weiliang;Wu, Sheng;Zheng, Chenxi;Lu, Xianju;Chang, Wushuai;Xiao, Pengliang;Guo, Xinyu
关键词:wheat; plant architecture; three-dimensional reconstruction; virtual design; plant phenotyping
-
Automatic acquisition, analysis and wilting measurement of cotton 3D phenotype based on point cloud
作者:Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Li, Yuankun;Zhang, Yongjiang
关键词:Phenotypic analysis; Deep learning; Leaf wilting; Multi-view
-
Maize emergence rate and leaf emergence speed estimation via image detection under field rail-based phenotyping platform
作者:Zhuang, Lvhan;Hao, Haoyuan;Li, Jinhui;Xu, Longqin;Liu, Shuangyin;Zhuang, Lvhan;Wang, Chuanyu;Hao, Haoyuan;Guo, Xinyu;Zhuang, Lvhan;Wang, Chuanyu;Hao, Haoyuan;Guo, Xinyu;Zhuang, Lvhan;Hao, Haoyuan;Li, Jinhui;Xu, Longqin;Liu, Shuangyin;Zhuang, Lvhan;Hao, Haoyuan;Li, Jinhui;Xu, Longqin;Liu, Shuangyin
关键词:Field rail-based phenotyping platform; Emergence rate; Leaf emergence speed; Faster R-CNN; Mask R-CNN