Interferon-Induced Transmembrane Protein 3 Is a Virus- Associated Protein Which Suppresses Porcine Reproductive and Respiratory Syndrome Virus Replication by Blocking Viral Membrane Fusion
文献类型: 外文期刊
作者: Zhang, Angke 1 ; Duan, Hong 2 ; Zhao, Huijun 1 ; Liao, Huancheng 1 ; Du, Yongkun 1 ; Li, Liangliang 4 ; Jiang, Dawei 1 ;
作者机构: 1.Henan Agr Univ, Coll Anim Sci & Vet Med, Zhengzhou, Henan, Peoples R China
2.Northwest A&F Univ, Coll Vet Med, Yangling, Shaanxi, Peoples R China
3.Henan Acad Agr Sci, Key Lab Anim Immunol, Minist Agr, Zhengzhou, Henan, Peoples R China
4.Liaocheng Univ, Coll Agron, Liaocheng, Shandong, Peoples R China
关键词: IFITM3; PRRSV; cholesterol; cellular vesicles; membrane fusion
期刊名称:JOURNAL OF VIROLOGY ( 影响因子:5.103; 五年影响因子:5.078 )
ISSN: 0022-538X
年卷期: 2020 年 94 卷 24 期
页码:
收录情况: SCI
摘要: Porcine reproductive and respiratory syndrome virus (PRRSV) infection eliminates production of type I interferons (IFNs) in host cells, which triggers an antiviral immune response through the induction of downstream IFN-stimulated genes (ISGs), thus escaping the fate of host-mediated clearance. The IFN-induced trans membrane 3 (IFITM3) has recently been identified as an ISG and plays a pivotal role against enveloped RNA viruses by restricting cell entry. However, the role of IFITM3 in PRRSV replication is unknown. The present study demonstrated that overexpression of IFITM3 suppresses PRRSV replication, while silencing of endogenous IFITM3 prominently promoted PRRSV replication. Additionally, it was shown that IFITM3 undergoes S-palmitoylation and ubiquitination modification, and both posttranslational modifications contribute to the anti-PRRSV activity of IFITM3. Further study showed that PRRSV particles are transported into endosomes and then into lysosomes during the early stages of infection, and confocal microscopy results revealed that PRRSV particles are transported to IFITM3-positive cellular vesicles. By using a single virus particle fluorescent labeling technique, we confirmed that IFITM3 can restrict PRRSV membrane fusion by inducing accumulation of cholesterol in cellular vesicles. Additionally, we found that both endogenous and exogenous IFITM3 are incorporated into newly producing PRRS virions and diminish viral intrinsic infectivity. By using cell coculture systems, we found that IFITM3 effectively restricted PRRSV intercellular transmission, which may have been caused by disrupted membrane fusion and reduced viral infectivity. In conclusion, our results demonstrate, for the first time, that swine IFITM3 interferes with the life cycle of PRRSV, and possibly other enveloped arteritis viruses, at multiple steps. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), which is caused by PRRS virus (PRRSV), is of great economic significance to the swine industry. Due to the complicated immune escape mechanisms of PRRSV, there are no effective vaccines or therapeutic drugs currently available against PRRS. Identification of cellular factors and underlying mechanisms that establish an effective antiviral state against PRRSV can provide unique strategies for developing antiviral vaccines or drugs. As an interferon (IFN)-stimulated gene, the role of IFN-induced transmembrane 3 (IFITM3) in PRRSV infection has not been reported as of yet. In the present study, it was shown that IFITM3 can exert a potent anti-PRRSV effect, and PRRS virions are trafficked to IFITM3-containing cell vesicles, where viral membrane fusion is impaired by cholesterol accumulation that is induced by IFITM3. Additionally, both endogenous and exogenous IFITM3 are incorporated into newly assembled progeny virions, and this decreased their intrinsic infectivity.
- 相关文献
作者其他论文 更多>>
-
Potential Pathogenicity and Genetic Characteristics of a Live-Attenuated Classical Swine Fever Virus Vaccine Derivative Variant
作者:Guo, Zhenhua;Xing, Guangxu;Jin, Qianyue;Lu, Qingxia;Zhang, Gaiping;Wang, Leyi;Wang, Leyi;Zhang, Gaiping;Zhang, Gaiping
关键词:
-
Proteomic analysis reveals the antiviral effects of baicalin on pseudorabies virus
作者:Niu, Qiaoge;Zhang, Gaiping;Niu, Qiaoge;Zhou, Chuanjie;Li, Rui;Guo, Junqing;Qiao, Songlin;Chen, Xin-xin;Zhang, Gaiping;Zhang, Gaiping
关键词:Baicalin; Pseudorabies virus; ROS; F3; NFU1; CEBPB
-
Marine peptides as potential anti-aging agents: Preparation, characterization, mechanisms of action, and future perspectives
作者:Yao, Wanzi;Zhang, Yifeng;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping
关键词:Marine peptides; Anti-aging; Preparation; Mechanisms; Oxidative stress; Signaling pathways
-
Thiolated chitosan encapsulation constituted mucoadhesive nanovaccine confers broad protection against divergent influenza A viruses
作者:Ding, Peiyang;Liu, Hongliang;Zhu, Xifang;Chen, Yumei;Zhou, Jingming;Wang, Aiping;Zhang, Gaiping;Ding, Peiyang;Liu, Hongliang;Zhu, Xifang;Chen, Yumei;Zhou, Jingming;Wang, Aiping;Zhang, Gaiping;Ding, Peiyang;Liu, Hongliang;Zhu, Xifang;Chen, Yumei;Zhou, Jingming;Wang, Aiping;Zhang, Gaiping;Chai, Shujun;Zhang, Gaiping;Zhang, Gaiping
关键词:Mucoadhesive; Thiolated chitosan; Influenza nanovaccine; M2e; Nucleoprotein
-
Identification of the Linear Fc-Binding Site on the Bovine IgG1 Fc Receptor (boFcγRIII) Using Synthetic Peptides
作者:Wang, Ruining;Guo, Junqing;Yang, Jifei;Li, Qingmei;Zhang, Gaiping;Wang, Ruining;Li, Ge;Wang, Xun;Zhang, Gaiping;Zhang, Gaiping
关键词:BoFc gamma RIII; Fc-binding site; bovine IgG1; synthetic peptides
-
Enhancing humoral and mucosal immune response of PED vaccine candidate by fusing S1 protein to nanoparticle multimerization
作者:Li, Minghui;Sun, Xueke;Wang, Siqiao;Wang, Yanan;Wang, Yue;Zhang, Gaiping;Li, Minghui;Sun, Xueke;Chen, Yilan;Wang, Siqiao;Li, Qin;Wang, Yanan;Wang, Yue;Li, Ruiqi;Zhang, Gaiping;Ding, Peiyang;Zhang, Gaiping;Ding, Peiyang;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping
关键词:PEDV; S1 protein; Nanoparticle; Subunit vaccine; Mucosal immunity
-
Pseudorabies virus tegument protein US2 antagonizes antiviral innate immunity by targeting cGAS-STING signaling pathway
作者:Kong, Zhengjie;Zhang, Yifeng;Guan, Kaifeng;Yao, Wanzi;Kang, Yu;Lu, Xinyi;Zhang, Gaiping;Chen, Xing;Gong, Lele;Wang, Lele;Zhang, Yuhang;Du, Yongkun;Sun, Aijun;Zhuang, Guoqing;Wan, Bo;Zhang, Gaiping;Zhao, Jianguo;Zhang, Gaiping;Zhang, Gaiping
关键词:pseudorabies virus; cGAS-STING; tegument protein US2; TRIM21; immune invasion